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Abstract 

The aim of this research project has been to improve the realism of models produced by 

an existing procedural tree generator. The models produced by this system are 

constructed as a set of intersecting generalized cylinders. Unfortunately, this approach 

fails to the capture smooth, natural blends where branches meet. It was postulated that 

these issues could be addressed by modelling the tree as a subdivision surface. To 

investigate this theory, a procedure was developed which first generates a 

parameterized mesh from an L-System graph and then converts it into subdivision 

surface. The most challenging aspect of the mesh generation process is modelling the 

points of furcation. This was solved by constructing a convex hull around ends of 

connected branches. This is a robust solution that stands up to any arbitrary branch 

configuration. This mesh is then converted into a subdivision surface through Loop 

subdivision. An experimental study was conducted to ascertain whether a subdivision 

surface is a more realistic representation of a tree than a set of generalized cylinders. The 

results of this study indicate that it is indeed are more realistic.  

 

 

 

Acknowledgements 

I would like to sincerely thank my supervisor, A/Prof James Gain, for his encouragement, 

guidance and invaluable insight. I would also like to thank my fellow project members 

Ryan Mazzolini and Donovan Foster for their hard work and support though both good 

times and bad. Finally I would like to thank our test participants for their assistance and 

our expert users for their wisdom and advice.  



i 

 

Table of Contents 

Chapter 1 Introduction .................................................................................................................. 1 

1.1 System Overview ............................................................................................................. 2 

1.1.1 Mesh generator........................................................................................................ 4 

1.1.2 Surface Subdivision .................................................................................................. 4 

1.1.3 Texture Synthesiser ................................................................................................... 5 

1.1.4 Leaf generator ......................................................................................................... 5 

1.2 Research Questions......................................................................................................... 5 

1.3 Legal Acknowledgments ............................................................................................... 7 

1.4 Thesis Outline .................................................................................................................... 7 

Chapter 2 Background of Subdivision Surfaces ......................................................................... 9 

2.1 Some Terminology ......................................................................................................... 10 

2.2 A word on NURBS ........................................................................................................... 11 

2.3 Significant subdivision schemes ................................................................................... 11 

2.3.1 Catmull-Clarke ....................................................................................................... 12 

2.3.2 Doo-Sabin ............................................................................................................... 12 

2.3.3 Loop ......................................................................................................................... 13 

2.3.4 Butterfly.................................................................................................................... 13 

2.3.5 Extended Catmull-Clarke ..................................................................................... 13 

2.3.6 Quasi-Interpolation ................................................................................................ 14 

2.4 Discussion ........................................................................................................................ 15 

Chapter 3 Related Work - Modelling Branching Structures .................................................... 17 

3.1 Parametric and Implicit Surfaces ................................................................................ 18 

3.2 Generating meshes for branching structures ............................................................ 19 

Chapter 4 Design and Implementation .................................................................................... 23 

4.1 Graph Construction ...................................................................................................... 25 

4.1.1 Introduction ............................................................................................................ 25 

4.1.2 The Graph ............................................................................................................... 25 

4.1.3 Branch Trimming .................................................................................................... 26 



ii 

 

4.1.4 Graph Simplification .............................................................................................. 29 

4.1.5 LST file format .......................................................................................................... 30 

4.1.6 LST Parser and Graph construction ..................................................................... 31 

4.2 Mesh Generation ........................................................................................................... 32 

4.2.1 Introduction ............................................................................................................ 32 

4.2.2 Generating the branch segments ....................................................................... 32 

4.2.3 Joint Construction .................................................................................................. 35 

4.2.4 Mesh Data Structure .............................................................................................. 43 

4.2.5 Wavefront .OBJ model format ............................................................................. 45 

4.3 Parameterization ........................................................................................................... 47 

4.3.1 Introduction ............................................................................................................ 47 

4.3.2 Parameterization of the branch segments ........................................................ 48 

4.3.3 Parameterization of the Joint Sections through Interpolation ......................... 49 

4.3.4 Collapsing edges ................................................................................................... 50 

4.3.5 Limitations ............................................................................................................... 52 

4.4 Subdivision Surfaces ...................................................................................................... 53 

4.4.1 Introduction ............................................................................................................ 53 

4.4.2 Loop Subdivision .................................................................................................... 54 

4.4.3 Subdividing texture coordinates .......................................................................... 55 

4.5 Discussion ........................................................................................................................ 56 

Chapter 5 Experimentation and Results .................................................................................... 58 

5.1 Initial Evaluation – Expert Users .................................................................................... 58 

5.1.1 Joint Mesh Construction Errors ............................................................................. 59 

5.1.2 Subdivision Surface Smoothness .......................................................................... 60 

5.1.3 Mesh Parameterization ......................................................................................... 60 

5.2 Final Evaluation – Participant Study ............................................................................ 61 

5.2.1 Experimental Method ............................................................................................ 61 

Experimental Procedure ...................................................................................................... 66 

5.2.2 Results ...................................................................................................................... 67 

5.3 Performance Evaluation ............................................................................................... 71 



iii 

 

5.4 System Limitations .......................................................................................................... 73 

5.4.1 Parameterization.................................................................................................... 73 

5.4.2 Subdivision of Texture Coordinates ..................................................................... 74 

5.4.3 Graph Simplification .............................................................................................. 74 

5.4.4 Bezier Curves .......................................................................................................... 75 

5.5 Example Models and Degenerate Cases .................................................................. 76 

Chapter 6 Conclusion .................................................................................................................. 82 

6.1 Future Work..................................................................................................................... 83 

6.1.1 Avoiding simplification .......................................................................................... 83 

6.1.2 Displacement maps .............................................................................................. 83 

6.1.3 Bezier Curves .......................................................................................................... 83 

References ..................................................................................................................................... 85 

Appendix ....................................................................................................................................... 90 

A An overview of the TreeDraw system ............................................................................. 90 

Sketch Interface and Gesture Recognition ...................................................................... 90 

2D to 3D converter ............................................................................................................... 90 

L-System Generator and Compiler .................................................................................... 91 

Tree Model Generator ......................................................................................................... 91 

B Edge collapse algorithm .................................................................................................. 92 

C Ethical Clearance ............................................................................................................. 93 

D Experiment Data ............................................................................................................... 95 

E Test Image Examples ........................................................................................................ 98 

 

  



iv 

 

List of Figures 

Figure 1.1: a. Axiom (ώ) and production rules of an L-System. b. The production rules are 

iteratively applied to the axiom. With each iteration the string is rewritten, leading to 

greater complexity. c. An axial tree interpreted from a bracketed string 

representation [1]. ‘F’ indicates that a branch must be constructed, ‘+’ and ‘-‘ 

indicate clockwise and anti-clockwise rotation respectively. The brackets denote 

depth. ....................................................................................................................................... 2 

Figure 1.2: Overview of the entire system. The arrows indicate the logical flow between 

components. Components in grey are part of the prior system, while coloured 

components are modules that have been developed by the members of this 

research project. The blue modules are the concern of this report. The mesh 

generator constructs a coarse polygon mesh from a graph produced by the L-

System Compiler. This mesh is then submitted for subdivision, which produces a 

smooth, high resolution mesh. This mesh is rendered and displayed. .............................. 3 

Figure 1.3: The TreeDraw Interface. To the left is the sketch interface and on right is the 

generated model. Users draw the structure of a tree that they would like to 

generate. When they are satisfied with the structure they then press the generate 

button and the sketch is submitted to the tree generation pipeline depicted in Figure 

1.2. Once the model is generated it is presented for inspection in a 3D interface. ...... 4 

Figure 1.4: Artefacts present in the model produced by TreeDraw. Left: Branches do not 

blend naturally. Right: Gaps occur between the branches. ............................................ 6 

Figure 2.1: An example of the iterative process of subdivision. The model on the left is the 

control mesh. The model on the far right is the approximated limit surface [10] ........... 9 

Figure 2.2: The different surfaces generated by applying different schemes to a cube [7]. 

(Left) Quadrilateral mesh. (Right) ........................................................................................ 12 

Figure 2.3: Smooth to infinitely sharp edges with Catmull-Clarke [10]. ................................. 15 

Figure 2.4: Quasi-interpolation of a subdivision surface to fit the net of curves in green [13]

 ................................................................................................................................................. 15 

Figure 3.1: A generalized cylinder defined by the curve in red [14] ..................................... 17 

Figure 3.2: A model produced by TreeDraw, constructed from generalized cylinders ...... 17 

Figure 3.3: Three examples of BlobTrees [32]. These skeletal implicit surfaces consist of 

capsules melded together with a blend function. ........................................................... 18 

file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267797
file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267797


v 

 

Figure 3.4: Recursive tiling based on the SMART method. For every branch, a quadrilateral 

is identified and the branch is attached in place of it [37]. ............................................ 20 

Figure 3.5: Construction from contours. To left is the set of contour planes and to the right 

is the mesh that is triangulated to connect the contours [42]. ....................................... 20 

Figure 3.6. An example of how the Interim Core Scheme [21] projects branches onto an 

icosahedron and then connects them. Once the mesh is complete it is converted 

into Loop subdivision surface. .............................................................................................. 21 

Figure 3.7: Skeleton to quad dominant mesh [43]. A graph is converted into a mesh by 

first creating polyhedrons at the joints and then quadrilating between them. ........... 22 

Figure 3.8: Joint constructions posed as a convex hull problem. The ends of the branches 

are projected onto the ends of a sphere and then a convex hull is formed from the 

projected vertices [25]. ........................................................................................................ 22 

Figure 4.1: The steps involved in constructing the model as well as the file outputs ........... 23 

Figure 4.2: An overview of the key steps involved in generating the control mesh. Figures 

a-c illustrate the construction of the graph, this is covered in section 4.2.  Figures d-f 

illustrate the stages of the mesh generation procedure, which is described in section 

4.3. ........................................................................................................................................... 24 

Figure 4.3: Half-sphere method of for offsets proposed by Hijazi et al. [25].......................... 27 

Figure 4.4: The five possible cases for calculating the minimum offset required to avoid 

intersection between two branches. ................................................................................. 28 

Figure 4.5: An example of a graph that has been simplified, and how the structure is 

undesirably affected ............................................................................................................ 29 

Figure 4.6: A sample LST file and the model that it represents ............................................... 30 

Figure 4.7: Steps involved in generating a single branch. ....................................................... 32 

Figure 4.8: Longer faces provide less control when subdivided. ........................................... 33 

Figure 4.9: Two faces constructed between the edge loops ................................................. 34 

Figure 4.10: The interim Core Scheme. The core refers to the icosahedron that can be 

seen in the centre of the joints. The branches are projected onto a sphere, and then 

a joint is triangulated using the vertices at the start of the branches, as well as select 

vertices from the icosahedron............................................................................................. 35 

file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267799
file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267799
file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267800
file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267800
file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267800
file:///C:/Users/Richard/Dropbox/Yggdrasil/FinalThesis.docx%23_Toc339267811


vi 

 

Figure 4.11: An overview of the joint triangulation process. Every edge in every loop must 

form a triangle with a vertex in another loop. If a triangle is formed then the loop 

must be reorganized. Loops are processed in clockwise order. The dark lines indicate 

the edge loops and how they are updated during the triangulation process. Figure b 

shows an occurrence of a double edge (the same edge repeated e.g. {…AB, BA…}) 

which must be detected and removed. ........................................................................... 36 

Figure 4.12: two pairs of vertices become taboo with every triangle that is formed. ......... 37 

Figure 4.13: Reorganization of loops after every triangle is formed. The red and blue lines 

indicate the edge loops. As new triangles are formed, the edges loops are updates. 

A dotted line indicates a double edge that was detected and removed. ................. 38 

Figure 4.14: Left: Calculating the face normal. Right: A valid face and an invalid face 

based on the dot product rule. ........................................................................................... 39 

Figure 4.15: Figures a, b and c show how the loops are transformed to meet the criteria 

for joint triangulation. Figure d depicts how the triangulated joint. In figure e the 

vertices are transformed back to their original positions. ................................................ 41 

Figure 4.16: Convex Hull Construction with the Randomized Incremental Algorithm ......... 42 

Figure 4.17: Constructing a convex hull for a set of vertex loops. .......................................... 42 

Figure 4.18: An illustration of the connectivity between the faces, edges and vertices of 

the mesh data structure ....................................................................................................... 44 

Figure 4.19: Left: A model that has not been parameterized. Right: A parameterized 

model with a texture applied. ............................................................................................. 47 

Figure 4.20: An example of a seamless texture that could be applied to the model. The 

white squares indicate the lower left corner of the texture ............................................ 48 

Figure 4.21: This is an illustration of how a texture is wrapped around a branch, as well as 

how the faces of the branch are unwrapped in texture space. For simplicity the 

faces are depicted as quadrilaterals. However, in the final implementation they are 

in fact tessellated into triangles. .......................................................................................... 49 

Figure 4.22: the various states of parameterization. Left: directly after the joint has been 

triangulated. Middle: After the edges of the joint have been collapsed many of the 

un-parameterized faces have been deleted. The final face is parameterized by 

interpolating the texture coordinates from the top left branch. .................................... 50 



vii 

 

Figure 4.23: After collapsing the edges, the new topology will produce rounder curves on 

the limit surface when subdivided. The curves are illustrated in yellow......................... 51 

Figure 4.24: An example of a degenerate edge collapse. This occurred as a result of the 

large variation in the branch radii. ..................................................................................... 51 

Figure 4.25: a: The structure of the model produced by the previous system. b: the control 

mesh produced by the mesh generation module. c: A high resolution mesh obtained 

through the repeated application of Loop subdivision to the control mesh. ............... 53 

Figure 4.26: An illustration of the effect of linearly subdividing the texture coordinates with 

every subdivision step. .......................................................................................................... 55 

Figure 4.27: The steps involved in constructing the model as well as the file outputs ......... 56 

Figure 4.28: Three models generated from the same LST file. The model at the top was 

created by TreeDraw’s existing model generator. The bottom left models was 

created by the mesh generator described in this report. This coarse mesh is then 

converted into the subdivision surface seen in the bottom left ..................................... 57 

Figure 5.1: An example of an edge case where faces intersect. .......................................... 59 

Figure 5.2: Ripples across the subdivision surface .................................................................... 60 

Figure 5.3: Mesh that forms the joint had not yet been assigned texture coordinates. ..... 60 

Figure 5.4: The test interface developed to capture participant data ................................ 64 

Figure 5.5: Box and Whisker plots for the three distributions obtained from the presenting 

silhouetted images to participants. .................................................................................... 70 

Figure 5.6: Box and Whisker plots for the three distributions obtained from the presenting 

shaded images to participants. .......................................................................................... 70 

Figure 5.7: The performance of the joint construction algorithms in relation to the degree 

of branching .......................................................................................................................... 72 

Figure 5.8: The performance of the Loop subdivision implementation in relation to the 

number of faces .................................................................................................................... 72 

Figure 5.9: Left: an example of seams introduces at the joint. Middle: Parameterized 

control mesh. Right: Distortion caused by subdivision near seams ................................ 73 

Figure 5.10: (Left) Model produced by TreeDraw. (Right) The same model produced by 

Yggdrasil displaying structural change due to the graph simplification step. .............. 74 



viii 

 

Figure 5.11: (Left): A tree produced by the previous system modelled with Bezier curves. 

(Right)A tree produced by this project without Bezier curves. ....................................... 75 

Figure 5.12: The figures above illustrate how subdivision surfaces smooth out irregularities 

that occur in the control mesh ............................................................................................ 80 

Figure 5.13: The images above depict a textured subdivision surface model. The model in 

the top image indicates that it is possible to generate curving branches despite the 

fact that Bezier Curves were not implemented. To achieve this, the curves must be 

manually drawn in the sketch interface. ........................................................................... 81 

Figure B.0.1: Collapsing 3 edges. First edge CB is collapsed, forming the merged vertex D 

with the combined weight of C and B. Next, Edge AD is collapsed forming merged 

vertex E whose weight is the combination of A B and C. ................................................ 92 

 

 

 

  



ix 

 

 

 

 

List of Tables 

Table 1.1: The licence agreements of libraries and frameworks incorporated in the 

development of the system. .................................................................................................. 7 

Table 2.1: A table comparing the key characteristics of the four outlined schemes. ........ 16 

Table 3.1: A useful comparison of the surface representations discussed [45]. With the 

exception of parameterization, subdivision surfaces combine the best properties of 

polygon meshes and implicit surfaces. .............................................................................. 22 

Table 4.1: The libraries and frameworks incorporated in the development of the system. 25 

Table 4.2: Operations that occur in the LST file format ............................................................ 31 

Table 5.1: Top: Means and medians of the distributions. Bottom: Results of the t-tests 

performed on the various distributions ............................................................................... 69 

Table D.1: Motivations for data exclusion ................................................................................. 95 

Table D.2 Scores Assigned by Participants to the Shaded Renders ...................................... 95 

Table D.3 Scores Assigned by Participants to the Shaded Renders ...................................... 96 

 



x 

 

  



1 

 

 

 

Chapter 1  

Introduction  

Over the years, the rise in quality, affordability and accessibility of rendering technology 

has led to a significant growth in the demand for digital content. The manual creation of 

this content, such as modelling and texturing, can be a laborious task that requires both 

skill and experience. Procedural generation provides an alternative approach by 

automating the content creation process. This automation is achieved through an 

algorithmic combination of functions, rules and pseudo-random numbers. From these 

algorithms complex structures and systems can emerge. Rather than replacing the need 

for artists, procedural techniques speed up their workflow, making it easier for them to 

realize their intentions. They also ensure stylistic consistency across large volumes of 

content, which is otherwise difficult to achieve. Without the low cost and efficiency 

afforded by procedural generation, producing the vast amount of content expected of 

modern blockbusters and video games simply would not be feasible. In light of this, 

procedural generation has become a pressing area of research.  

Tree models are particularly well suited to procedural generation. This is because their 

self-similar structure lends itself well to rule based construction. A prominent technique for 

procedurally modelling a tree is the parameterized L-System [1]. L-Systems are a formal 

grammar introduced by Aristid Lindenmayer in 1968 as a framework for modelling multi-

cellular organisms. Over time L-systems have become a popular method of modelling 

plant growth [1].  

An L-System grammar consists of an alphabet of characters, a set of production rules, 

and an initial string, called the axiom. The production rules are applied in parallel to the 

characters in the axiom, rewriting them with new substrings. From this simple process 

complex patterns emerge. In the context of procedural tree generation, the rewritten 

string produced by the L-system is interpreted geometrically. This is achieved by assigning 

operations to each of the characters in the string. These operations describe the 

branches of a tree through a sequence of translations and rotations. An illustration of an 

L-system appears in Figure 1.1.  
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Figure 1.1: a. Axiom (ώ) and production rules of an L-System. b. The production rules are 

iteratively applied to the axiom. With each iteration the string is rewritten, leading to greater 

complexity. c. An axial tree interpreted from a bracketed string representation [1]. ‘F’ 

indicates that a branch must be constructed, ‘+’ and ‘-‘ indicate clockwise and anti-

clockwise rotation respectively. The brackets denote depth. 

However, generating the structure of a tree is only half the challenge. For trees to be 

useful they must also look realistic and stand up to close inspection. A common 

approach to modelling a tree is to construct a separate mesh for each branch. The mesh 

of one branch is then intersected with another to create the appearance of 

connectivity. However, this method does not capture the smooth natural blend between 

branches that is observed in real trees. The aim of this research project is to address this 

blending problem by modelling the tree as a subdivision surface. A subdivision surface is 

formed when a coarse polygon mesh is recursively refined until it approximates a smooth 

surface. With each refinement step the faces are subdivided and vertex positions are 

smoothed. The end result of this process is a high-resolution polygon mesh, the surface of 

which appears smooth and continuous. In order for subdivision to be applied a manifold 

polygon mesh is required. In this context, manifold refers to a mesh where every edge has 

no more than two incident faces. Constructing such a mesh for an arbitrary branching 

structure is a non-trivial problem and the focus of this report.  

1.1 System Overview 

This research project builds on an existing procedural tree generation system developed 

during a previous research project [2, 3, 4]. This system, named TreeDraw, is a sketch-

based procedural tree generator that uses parameterized L-Systems to generate trees 

that exhibit variation.  The sketch interface allows a user to draw a two dimensional 

skeleton of a tree, from which an L-system is generated. A string is then derived from the 

L-System and geometrically interpreted as the branches of a tree. These branches are 

modelled in 3D as a set of generalized cylinders. A key feature of the system, which 

distinguishes it from other procedural tree generators, is the ability for the user to specify 
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variation during the sketching phase. This variation is encoded in the L-system and allows 

for multiple similar, yet individually unique, trees that appear to be variants of the same 

species. This allows a forest of unique trees to be generated from a single sketch. The 

system was designed to be modular, allowing the researchers to develop the different 

components concurrently. These components are illustrated in Figure 1.2. A more 

detailed overview of TreeDraw appears in Appendix A.  

 

Figure 1.2: Overview of the entire system. The arrows indicate the logical flow between 

components. Components in grey are part of the prior system, while coloured components 

are modules that have been developed by the members of this research project. The blue 

modules are the concern of this report. The mesh generator constructs a coarse polygon 

mesh from a graph produced by the L-System Compiler. This mesh is then submitted for 

subdivision, which produces a smooth, high resolution mesh. This mesh is rendered and 

displayed.  

 

The research presented in this paper is part of a three pronged attempt to improve the 

realism of the models produced by this system. While mesh generation and subdivision 

surfaces are the focus of this report, two other modules have been developed by fellow 

research group members. These are texture synthesis and procedural leaf generation. To 

distinguish between the extended system and the existing system (TreeDraw), the 
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extended system will be referred to as Yggdrasil for the duration of this report. Yggdrasil, 

named after the World Tree of Norse mythology, is essentially TreeDraw with the new 

modules integrated into the model generation pipeline. This makes it easier to draw 

comparisons between the systems in later chapters. The new modules introduced by this 

project are outlined below: 

 

 

Figure 1.3: The TreeDraw Interface. To the left is the sketch interface and on right is the 

generated model. Users draw the structure of a tree that they would like to generate. When 

they are satisfied with the structure they then press the generate button and the sketch is 

submitted to the tree generation pipeline depicted in Figure 1.2. Once the model is 

generated it is presented for inspection in a 3D interface. 

1.1.1 Mesh generator 

This module constructs a manifold polygon mesh representing the entire tree using as 

input a graph produced by an L-system. The mesh is constructed entirely of triangles with 

the intention of being converted into a subdivision surface. It is parameterized so that a 

bark-like texture can be applied. 

1.1.2 Surface Subdivision 

The polygon mesh created by the mesh generator is a coarse representation of a tree 

and has an unnatural faceted surface. To improve this Loop subdivision is applied to the 
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mesh. The Loop subdivision scheme, proposed by Charles Loop [5], is tailored for the 

refinement of meshes consisting entirely of triangles. This makes it a very general solution. 

With each refinement step the mesh is tessellated and the vertex positions are smoothed. 

Ultimately, a smooth surface is produced that is continuous in appearance. 

1.1.3 Texture Synthesiser 

The simplest method of texturing a tree is to tile a seamless bark image along the length 

of each branch. This is the method used by TreeDraw and a similar method is 

implemented in the mesh generator. However, creating textures that are seamless is a 

difficult task. The purpose of the texture synthesizer is to produce a new yet similar 

seamless texture from a user provided sample. Texture synthesis affords the user the ability 

to create a tileable texture from an arbitrary source such as a photograph. It also 

increases the potential for variation in the final models as each model will have a similar 

but unique texture.   

1.1.4 Leaf generator 

The previous system concentrated entirely on generating the branching structure of the 

tree. This module greatly enhances the realism of the final model by placing leaves at the 

end of every branch. To create the leaves, users first draw an outline of a desired leaf in a 

sketch interface. The leaf is then generated through a process known as venation. This is 

involves iteratively placing nodes inside the sketched outline and growing veins towards 

them. The parameters that affect the vein growth and colour are selected randomly from 

user specified ranges. This allows multiple unique leaves to be generated from the same 

sketch.  

1.2 Research Questions 

The models produced by TreeDraw consist of a set of intersecting generalized cylinders. 

These generalized cylinders follow a Bezier curve that is aligned at its start with the branch 

from which it grows. A single seamless bark-like texture is tiled along the length of the 

branches. Although this representation provides a good approximation of the tree 

generated, it exhibits several artefacts which reduce the overall realism. The models 

appear particularly unnatural at the points where branches meet and gaps also occur at 

points where branches are not perfectly aligned. 
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Figure 1.4: Artefacts present in the model produced by TreeDraw. Left: Branches do not blend 

naturally. Right: Gaps occur between the branches. 

To address these issues we investigate whether subdivision surfaces can be used to more 

realistically model a tree. Besides subdivision surfaces, two other techniques for improving 

the realism of the models were investigated by fellow project members, as described 

earlier: texture synthesis and leaf generation through venation. From these investigations, 

three separate research questions arise. The first is the subject of this research report, while 

the last two of are the concern of group members [6, 7]. 

1. Can branching structure be more realistically modelled by subdivision 

surfaces?  

 

2. Can texture synthesis be used to generate a realistic texture of bark that 

exhibits variation from a provided sample?  

 

3. is the best method to create similar, realistic leaves from a user provided 

sketch, allowing for variation? 

Realism is a difficult quality to quantify. To find out whether subdivision surfaces do in fact 

produce more realistic models than TreeDraw, an experimental study was performed with 

over thirty participants. In this study participants were presented with rendered images of 

branches from TreeDraw and Yggdrasil and asked to assign a realism score to each 

image. Following this they were presented with silhouetted images of models produced 

by both systems as well as segmented branch joints of real trees. Once again they were 

asked to assign a realism score to each. The range of the score was 0 to 100, where 0 

corresponds to "not at all realistic" and 100 maps to "highly realistic". A detailed account 

of both the methodology and results can be found in chapter 5.  
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The performance of the system was also evaluated. In the previous research project a 

strict thirty second time limit was set within which the system had to interpret the user’s 

sketch input, generate a complied L-system and produce the model. Although this is not 

a constraint placed on the model construction process described in this report, it is 

important to analyse its performance. The results of the performance evaluation can be 

found in chapter 5.  

1.3  Legal Acknowledgments 

The rapid development of this system owes credit to the following libraries. Their licenses 

allow them to be freely used for non-commercial purposes.  This is a research project and 

no commercial release is intended. 

Table 1.1: The licence agreements of libraries and frameworks incorporated in the 

development of the system. 

LIBRARY LICENCE URL 

QT LPGL http://qt.digia.com/ 

BOOST Boost Software License http://www.boost.org/ 

RAPIDXML Boost Software License or MIT License 

(user decides)   

http://rapidxml.sourceforge.net/ 

VMATH BSD Licence http://bartipan.net/vmath/ 

1.4 Thesis Outline 

This report describes the research, development and evaluation of a mesh generation 

algorithm and an implementation of Loop subdivision.  The research has been largely 

explorative. Although the field of subdivision surfaces is well established, the same cannot 

be said of generating meshes for branching structures. As such a large portion of time 

was spent researching and implementing different approaches to mesh generation. Two 

avenues of mesh generation were fully explored. These are presented in the design and 

implementation chapter. 

The rest of this report is structured as follows. In chapter 2, the background behind 

subdivision surfaces is presented. Next, chapter 3 provides a brief overview of related 
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work pertaining to the algorithmic modelling of branching structures. In chapter 4 both 

the design and implementation are covered in detail. Following this, chapter 5 presents 

the methodology and results of expert user testing, experimental evaluation and 

performance tests. Chapter 6 concludes this report with a summary and a discussion of 

future work. 
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Chapter 2  

Background of Subdivision Surfaces 

In this chapter the background behind subdivision surfaces is presented. A subdivision 

surface is a polygon mesh that has been recursively refined until it approximates a 

smooth surface. With each refinement step the faces are subdivided and vertex positions 

are smoothed. It is important to understand the nuances of subdivision surfaces in order 

to appreciate their applicability to the modelling of trees. The chapter begins with a brief 

introduction to subdivision surfaces, after which, four of the most prominent subdivision 

surface schemes are outlined, namely: Catmull-Clarke, Doo-Sabin, Loop and Modified 

Butterfly. Two extensions to Catmull-Clarke are also discussed. The chapter concludes 

with a comparison of the schemes and a discussion of their applicability to procedurally 

generated trees. 

In computer graphics subdivision surfaces are a hybrid of polygonal meshes and 

polynomial splines [8]. They are used to represent a continuous smooth surface derived 

from an arbitrary polygon mesh. The process begins with an input mesh consisting of 

vertices, edges and faces. This mesh, known as the control mesh, is then iteratively 

subdivided into smaller faces which conform to a piecewise linear approximation of the 

limit surface [9]. For rendering purposes, the mesh is usually only subdivided until each 

face is approximately the size of one screen pixel. Subdividing any further will have no 

perceivable effect on smoothness. As a technique, subdivision surfaces have become 

popular due to their efficiency, convenience and flexibility [10]. 

 

Figure 2.1: An example of the iterative process of subdivision. The model on the left is the 

control mesh. The model on the far right is the approximated limit surface [10] 
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2.1 Some Terminology 

Over the last three decades a diverse assortment of subdivision schemes have been 

developed, each having their own distinct characteristics and ideal applications. The 

four most important characteristics are: face type, splitting preference, whether the 

scheme is approximating or interpolating, and surface continuity. 

We begin with the face type. This refers to whether a scheme generates triangle, 

quadrilateral or hexagonal faces during each subdivision step [11]. This is an important 

consideration as a scheme that generates quadrilaterals, such as Catmull Clarke, will 

perform better on a mesh consisting entirely of quadrilaterals than one consisting of 

triangles or a mixture. 

The second distinction lies in whether a scheme subdivides the mesh by splitting the faces 

or by splitting the vertices. In the former, the faces are simply divided into N new faces 

and the original vertices are retained. In the latter a new face is created in place of each 

previous vertex. Doo and Sabin [12] informally describe vertex splitting as 'chopping off 

the corners'. In the case of vertex splitting, the type of face produced depends on the 

valence of the vertex (the number of edges connected to it). For valences of 3, 4 or 6, 

vertex splitting will produce a triangle, a quadrilateral or a hexagon, respectively [11]. 

The third distinction is whether the subdivision scheme is approximating or interpolating. If 

the limit surface passes though the vertices of the control mesh then it is an interpolating 

scheme. If this is not the case, then the scheme is approximating. Approximating methods 

produce higher quality surfaces, but interpolating methods allow intuitive mesh 

manipulation since the control points lie on the surface [11]. Interpolation also has the 

added benefit of allowing algorithms to be simplified and performed in place [11]. It is 

worth noting that there is also an extension called quasi-interpolation [13], which 

attempts to combine the best of both approximation and interpolation, and is discussed 

in more detail in section 2.3.6. 

The fourth and final distinction is in the surface continuity that a scheme provides. 

Continuity is often denoted as CN. This means that all N derivatives of the surface are 

continuous. C0 implies that all curves and surfaces are connected, an example of this is 

any genus-zero mesh.  Almost all subdivision schemes produce C1 continuity which 

indicates that there are no sharp seams. At best some schemes can boast C2 continuity 

across the majority of the surface. C1 denotes tangent plane continuity. A surface is C2 

continuous if the second derivative is continuous across all interior points [14]. C2 

continuity incorporates C1 continuity as sub condition, and implies a greater smoothness. 

An ideal subdivision scheme is said to be one which produces a surface that is C2 
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continuous everywhere [14]. Unfortunately such a scheme, which can be applied to any 

mesh, does not exist.  

2.2 A word on NURBS 

Prior to subdivision surfaces the dominant method for modelling smooth curved surfaces 

was Non-Uniform Rational B-Splines or NURBS. Unlike subdivision surfaces which can 

represent any arbitrary mesh topology, NURBS require that the topology be 

fundamentally equivalent to a sheet, a cylinder or a torus [15]. A good way to visualize 

topological equivalence is to consider the case of a coffee cup and a doughnut. It is 

possible to mould a donut into a coffee cup since both have exactly one hole punched 

through them (they are both genus one). As such, they are topologically equivalent. In 

contrast, it would not be possible to create a coffee cup from a sphere since the sphere 

does not have a hole in it to form the handle [10].  

The implication of this limitation is that complex models, such as the human form, need to 

be stitched together from multiple NURBS surfaces. Often these stitched patchworks will 

exhibit rendering artefacts at their seams, especially upon deformation. Furthermore, in 

order to be stitched together the NURBS first need to be trimmed, a process which is both 

costly and prone to numerical error [15]. In his paper, De Rose [15] cites the significant 

labour taken to hide the seams of the NURBS surfaces in the face of the character Woody 

in the film Toy Story. Subdivision surfaces allow models to be constructed with the ease of 

polygon, while attaining the smoothness afforded by NURBS and other spline surfaces [16] 

. One benefit of using NURBS is that texture mapping is trivial due to the 2D 

parameterization intrinsic to them [17]. 

2.3 Significant subdivision schemes 

In the three decades since the dawn of subdivision surfaces the field has become both 

vast and nuanced. For the purposes of this chapter only four of the most influential 

subdivision schemes are discussed. These are Catmull-Clarke, Doo-Sabin, Loop, and 

modified butterfly. 
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Figure 2.2: The different surfaces generated by applying different schemes to a cube [7]. (Left) 

Quadrilateral mesh. (Right) 

2.3.1 Catmull-Clarke 

The evolution of subdivision surfaces can be traced back to 1978 when Catmull and 

Clarke [9] first described a method for recursively generating both bi-quadratic and bi-

cubic subdivision surfaces. The Catmull-Clark scheme is guaranteed to be C2 continuous 

everywhere across the surface except at the extraordinary vertices where it is only C1 

continuous. An extraordinary vertex is defined as a vertex with an irregular valence. In 

these extraordinary cases the regular subdivision rules do not apply and a set of 

extraordinary rules must be defined. What is considered a regular valence varies 

between subdivision schemes and is often one of the primary motivations for a schemes 

existence. In the case of Catmull-Clarke an extraordinary vertex has a valence not equal 

to four. Similarly, an extraordinary face is one that is not made up of four edges. Although 

the surface displays singularities of C1 continuity at extraordinary vertices, during 

subdivision the number of these vertices remains constant, while the rest of surface 

becomes increasingly C2 continuous. 

2.3.2 Doo-Sabin 

Published in the same journal issue as Catmull-Clarke, Doo and Sabin [12] present 

alternative scheme that addresses the issue of extraordinary rules. Unlike Catmull-Clarke, 

which subdivides by splitting faces, Doo-Sabin is a vertex splitting scheme. As all vertices 

of any valence are treated equally, the only case where a special rule is required is at 
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mesh boundaries, where an edge has only one adjacent face. Doo [11] observes that 

this special rule can be avoided by extruding the boundary edge onto itself so that the 

boundary edge gets a second adjacent face with a surface area of zero. Alternative 

approaches to defining boundary rules have been described by Nasri [18]. The 

drawback of the Doo-Sabin method is that the subdivision surface is entirely C1 

continuous [12]. Although this is consistent, the surface produced by Catmull-Clarke is 

predominantly c2 continuous, which is more desirable. Doo-Sabin is also an 

approximating scheme. 

2.3.3 Loop 

Later, in 1987, Loop [5] proposed a scheme similar to Catmull-Clarke in that it is both 

approximating and employs face-splitting to subdivide. The crucial distinction is that Loop 

is generalized to process regular triangular meshes. This is an important difference as the 

Catmull-Clarke method requires a control mesh consisting entirely of quads; a significant 

limitation since most meshes are in fact irregular, consisting of both of quadrilaterals and 

triangles. By including a pre-processing step that tessellates all quadrilaterals into 

triangles, Loop can effectively subdivide any arbitrary, possibly irregular, mesh. Like 

Catmull-Clarke, Loop also has the attribute of being C2 continuous everywhere, except at 

extraordinary vertices where C1 continuity applies [5]. An added benefit of Loop is that it 

supports valences of up to one hundred, even at the boundaries [11]. This makes it very 

flexible. 

2.3.4 Butterfly 

Later, in 1990, a scheme known as Butterfly was proposed by Dyn, Gregory and Levin [19]. 

It was also developed to process triangular faces, however, unlike Loop, which is an 

approximating scheme, Butterfly is an interpolating scheme. As a result Butterfly does not 

generate piecewise polynomial surfaces. In fact the scheme is not even guaranteed to 

be C1 continuous. It does, however, benefit from being easier to implement. Later, In 1996 

Zorin et al [1], proposed the Modified Butterfly scheme for handling extraordinary vertex 

cases. This modified method guarantees C1 continuity across the entire surface of regular 

meshes. One weakness of interpolating schemes, like Modified Butterfly, is that 

unpredictable ripples and undulations are known to occur over the surface, especially 

near tight joint areas [11]. This it is particularly problematic for modelling branches  

2.3.5 Extended Catmull-Clarke 

Subdivision surfaces are effective, but they are also limited to representing smooth 

continuous surfaces. In the real world objects consist of curves, creases, sharp edges, and 
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everything in-between. Fortunately, in 1998 DeRose et al [15], who were at the time 

working at Pixar, published a paper on the subdivision techniques used in their short film, 

Geri's Game. The paper introduces the concept of infinitely sharp and semi-sharp 

creases. These creases can be used to represent sharp features such as fingernails and 

edges. To create semi-sharp creases they implement a hybrid subdivision procedure that 

uses a set of infinitely sharp rules for the first N iterations and then applies the regular 

smoothing rules to the limit [15]. The number of sharp rule iterations is determined by 

weighting the edges between 0 and 1. An edge with a weight of zero is perfectly smooth, 

while a weight of 1 will lead to an infinitely sharp crease. An example of these can be 

seen in Figure 3.  

In the same paper De Rose et al [15] identified Catmull-Clarke as the most appropriate 

scheme for their purposes and showed that the propagation of UV coordinates through 

subdivision can be achieved implicitly. This propagation is achieved by subdividing the 

mesh in 5-space defined as (x, y, z, u, v) where u and v are the scalar texture coordinates 

for a given vertex [15]. UV coordinates are of great importance as they describe how 

textures map to a model's surface. De Rose et al [15] also show that textures deform more 

naturally over subdivided surfaces [8, 20] than over the control mesh. Unfortunately, no 

mention is made of how to handle texture seams. 

2.3.6  Quasi-Interpolation 

So far the various surface representations discussed all place a restriction on the kind of 

curve that can be interpolated. NURBS surfaces, as one would expect, are good for 

interpolating NURBS curves. Quadratic B-spline curves can be interpolated by Doo-Sabin 

and Catmull-Clarke produce cubic B-splines. Levin [13] addresses these restrictions by 

introducing the technique of quasi-Interpolation which is designed to interpolate nets of 

curves. This scheme extends Catmull-Clarke and can be categorized as a combined 

subdivision scheme. It begins by identifying the edges of the control mesh with segments 

on the curves. These edges are called c-edges and are comprised of c-vertices. The 

algorithm itself has 3 steps. First it performs standard Catmull-Clarke subdivision on all the 

vertices that are not c-vertices, called ordinary vertices. Next, the new c-vertices are 

calculated based on their associated curves. Finally, local corrections are performed on 

all the ordinary vertices that neighbour c-vertices. This three step process is iterated to the 

surface limit. Essentially, as the mesh is refined extra steps are taken to drag associated c-

edges towards the specified parametric curves. This leads to the final subdivided mesh 

conforming to the net of curves. The scheme is constrained to no more than two curves 

intersecting at the same point. Levin [13] notes that creases can be achieved by not 

applying the local corrections at every step. 
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Figure 2.3: Smooth to infinitely 
sharp edges with Catmull-Clarke 

[10]. 

 Figure 2.4: Quasi-interpolation of a subdivision surface to fit the net of 
curves in green [13] 

 

2.4 Discussion 

Subdivision surfaces have many advantages. They are a simple method that can 

describe complex surfaces with arbitrary topology.  They guarantee at least C1 continuity 

and texture coordinates can be propagated implicitly by performing subdivision in 5-

space [15]. They certainly have applicability to the modelling of trees, however, the 

choice of scheme depends on the control mesh and the desired qualities of the final 

surface. The differences between the schemes presented is perhaps most apparent 

when examining the surfaces they produce rather than their characteristics. Figure 2.2 

shows the different limit surfaces produced by the four schemes when applied to the 

same control mesh. A full comparison of scheme characteristics can be found in Table 

2.1. From Figure 2.2 it is clear that Catmull-Clarke produces the most pleasing surface for 

a quadrilateral box. However, Catmull-Clarke does not perform as well on a tetrahedron 

comprised of triangle faces. From a continuity stand-point, Loop and Catmull-Clarke 

have the clear advantage over Doo-Sabin and Butterfly. This is because for regions away 

from the extraordinary vertices Loop and Catmull-Clarke generate C2 continuous 

surfaces [11]. Interpolating schemes such as Modified Butterfly often exhibit undesirable 

ripples and undulations over the surface, especially near tight joint areas [11]. This is a 
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serious issue for tree meshes as the branch joints are of primary concern. That being said, 

a benefit of using an interpolation scheme is that it implicitly avoids branch shortening as 

the limit surface lies on the control mesh. 

Table 2.1: A table comparing the key characteristics of the four outlined schemes. 

Scheme Approximating 

or interpolating 

Face 

Type 

Split Curve 

generalization 

Continuity Year 

Catmull-

Clarke 

Approximating Quads Face  Cubic B 

splines 

C2 except at 

extraordinary 

vertices 

1978 

Doo-

Sabin 

Approximating Quads Vertex Quadratic  

Box splines 

C1 1978 

Loop Approximating Triangles Face triangular Box 

splines 

C2 except at 

extraordinary 

vertices 

1990 

Modified 

Butterfly 

Interpolating Triangles Face n/a C1  1996 

 

The use of subdivision surfaces to model the surfaces of trees is far from novel. Both loop 

and Catmull-Clarke have been popular choices [21, 14, 22]. Subdivision surfaces have 

also been used extensively to model blood vessels, which have a very similar branching 

structure to trees. When comparing subdivision schemes it is important to consider the 

characteristics of the mesh to which they will be applied. In the case of this project, the 

model consists of a single mesh consisting entirely of triangles. The branches cannot 

decrease in length during subdivision and the branch tips must remain sharp. The mesh 

has no holes, except at the tops of the branches, which are left open. As such the 

method must cater for boundary conditions. The primary motivation for applying 

subdivision to a tree mesh is to smooth and blend the joints where braches attach. The 

method of quasi-interpolation can be used to force the branches to conform to set of 

curves, affording more control over the limit surface. Subdivision surfaces can be 

extended for multi-resolution levels of detail. Using techniques like fitting [23] and 

displacement maps [24], extra geometric detail such as bark cracks and knots can be 

generated during subdivision. The use of such techniques greatly increases the potential 

fidelity of procedurally generated trees. Such functionality is available in most rendering 

packages. It is clear that surface subdivision is applicable to the task of modelling trees; 

however, before it can be applied a control mesh must be constructed. In the next 

chapter work relating to the generation such a mesh is reviewed. 
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Chapter 3  

Related Work - Modelling Branching Structures 

Branching structures appear frequently in nature. The vascular tree, for example, can 

branch into as many as seven arteries [25]. Some species of tree exhibit even higher 

degrees of branching. The ability to accurately model these branching structures is 

important in both the entertainment industry and for the visualization of scientific data. 

However, developing a robust and general solution to modelling branching structures is 

difficult. A commonly employed tool is the generalized cylinder [26, 3]. A generalized 

cylinder is a parametric surface defined by sweeping a planar cross section along a curve 

[14]. Generalized cylinders were used to great effect in modelling the trees generated by 

TreeDraw [3]. Unfortunately, they do have their limits. Most significantly, they do not 

accurately model the smooth blend between connected branches.  

 

Figure 3.1: A generalized cylinder defined by the curve in red 
[14] 

 

Figure 3.2: A model produced by TreeDraw, 
constructed from generalized cylinders  

 

In the previous chapter, subdivision surfaces were introduced. For a subdivision surface to 

be created, a control mesh is first required. Creating such a mesh for a branching structure 

is non-trivial. In this chapter previous work that relates to the modelling of branching 

structures is presented. Historically, subdivision surfaces are not the only methods of 

modelling smooth furcating structures, and as such, alternative methods to subdivision 

surfaces are also discussed. 
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3.1 Parametric and Implicit Surfaces 

One of the earliest attempts at modelling smooth bifurcations is due to Bloomenthal [27] 

who took a parametric approach. Branch limbs are still represented as generalized 

cylinders, however, the joint is modelled as a parameterized ramiform. This ramiform is a 

surface lofted from several splines that are defined by the bifurcation.  

A pioneering force in procedural tree modelling; Bloomenthal [28] next introduced implicit 

surfaces as framework for representing branch junctions [29], which provides a more 

generalizable solution. Implicit surfaces is defined by a set of R3points at which the value of 

an implicit function is equal to zero [29].  As an example [30], a unit sphere can be defined 

by the implicit function 𝑓(𝑥) = 1 − |𝑥|, for points 𝑥 ∈ 𝑅3, All points that lie on the surface of 

the sphere will evaluate to 𝑓(𝑥) = 0. For points that lie inside the sphere the function will 

produce a positive value while points that lie outside will produce negative values. The most 

appropriate form of implicit surface for modelling trees is a skeletal implicit surface [28].  The 

function that defines the surface consists of a set of implicit functions and a set of primitives; 

usually spheres and cylinders.  Branches are modelled by cylinders, while spheres are 

placed at the joints. A blend function is used to create a smooth transition between these 

primitives. A problem with using implicit surfaces is that bulging often occurs at the joints. 

Bloomenthal [31] addressed this problem with a variant of implicit surfaces known as 

convolution surfaces which reduce bulging [29].  Galbraith et al. [32] use convolution 

surfaces to great effect to model BlobTrees, which capture not only the smooth blends 

between branches but also the ridges and scars that are frequently occur in natural branch 

junctions. In another paper, Jin et al. [33] show that convolution surfaces can be used 

model general skeletal structures. 

 

 

Figure 3.3: Three examples of BlobTrees [32]. These skeletal implicit surfaces consist of 

capsules melded together with a blend function. 
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Unfortunately, there are many technical difficulties associated with the use of implicit 

surfaces; two of the most significant are robustness and computational expense. The 

function that is used to blend between the primitives is often not robust, often requiring 

tuning on a per case basis [25]. The computational expense of implicit surfaces lies in their 

render complexity. They can either be ray traced or, alternatively, tessellated into a 

polygon mesh and rasterized. Implicit surfaces lend themselves to ray tracing since the ray 

intersection can be evaluated with the implicit function. Converting implicit surfaces to 

polygon meshes can be problematic. If the voxel grid used to sample the surfaces is too 

coarse then smaller branches maybe partially or entirely lost [14]. Despite these problems 

implicit surfaces have historically been a popular method of modelling procedurally 

generating trees. To their credit implicit surfaces lend themselves well to parameterizations 

for texture mapping [34]. 

3.2 Generating meshes for branching structures 

As a result of the issues surrounding both parametric and implicit surfaces, subdivision 

surfaces have become a popular alternative. However, before a subdivision surface can be 

created, a coarse polygon control mesh must be constructed. The most difficult aspect of 

the mesh construction process is forming the joints where branches meet. Over the past 

decade several approaches have been proposed. 

Felkel et al. [35] describe a method of constructing a mesh for blood vessels using recursive 

tiling. Their method is named SMART which is an acronym for Surface Models from by-Axis-

and-Radius defined Tubes. SMART constructs a mesh consisting entirely of quadrilaterals. 

Branches are added one at a time. Every time a branch must be connected, a 

quadrilateral on the mesh surface is identified and replaced by the outgoing branch. 

Although the method generalizes to arbitrary branch configurations, only bifurcations and 

trifurcations are demonstrated, so the quality of surfaces with high order branching cannot 

be confirmed. Delingette [36] presents a similar solution, but instead of using a quadrilateral 

mesh, a simplex mesh is employed instead. A simplex mesh is a good choice when the 

mesh must undergo deformation. In their paper, Eidheim and Skjermo [37] point out that 

SMART sometimes produces meshes that intersect locally, requiring manual adjustment. In 

response to this, they propose a method, based on SMART which is fully automatic. In their 

method the Da Vinci rule [37, 38] is used to prevent self-intersection and ensure mesh 

consistency. Since the mesh consists of quads the Catmull-Clarke subdivision method may 

be applied to produce a smooth surface. 
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Figure 3.4: Recursive tiling based on the SMART method. For every branch, a quadrilateral is 

identified and the branch is attached in place of it [37]. 

An alternative approach is presented by Gabrielides et al. [39]. They describe a method of 

reconstructing branching surfaces from contours sampled at a regular interval. The 

motivation for such a method is to reconstruct 3D models of vessels and organs from stacks 

of segmented images obtained through Computed Tomography (CT) scans. Jha [40] 

presents a similar method of construction from contours that extends his previous work [41]. 

Burguet [42] also presents a method based on contours. Unfortunately, all these 

approaches to mesh construction from contours do not lend themselves to general branch 

construction. Cases where branch axes are parallel to the contour planes are problematic, 

since the contours planes split them down their length. Furthermore. to be applied in 

general the graph would first need to be sampled as a set of contours. These methods have 

also not been specifically demonstrated on high order branching structures.  

 

 

 

 

Figure 3.5: Construction from contours. To left is the set of contour planes and to the right is the 

mesh that is triangulated to connect the contours [42]. 
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The research presented by MacMurchy [14] is similar to that conducted in this project. It also 

investigates the application of Loop subdivision to a single mesh constructed from an l-

system skeleton. The fundamental distinction lies in the method employed in generating the 

joint sections of the mesh. MacMurchy’s approach is a Junction Template method. A series 

of mesh templates are predefined for a set of potential branching patterns. Whenever one 

of these patterns occurs the appropriate template is selected and placed between the 

branches to form the joint. The benefit of this approach is that the templates are 

topologically well-formed with optimal parameterizations. The most significant shortcoming 

of this method is that it requires a template to be defined for every possible branch 

configuration and thus is not a general solution. In the paper only planar bifurcation and 

trifurcations are supported. 

 

 

 

Ou and Bin [21] present a geometric approach to joint construction, which they named the 

Interim Core Scheme. In this scheme joint construction is treated as a triangulation problem. 

They make use of a convex polyhedron around which the joint is constructed. In the paper 

it the polyhedron is implemented as an icosahedron. To create the joint, first the ends of the 

branches are projected onto a virtual sphere around the icosahedron. Next, the joint mesh 

is triangulated from the ends of the branches, selectively using vertices from the 

icosahedron to smooth the transition. This approached seemed very viable and large 

amount of time was spent investigating and implementing it. Unfortunately, the placement 

and orientation are pivotal in creating a well formed joint (as is discussed in much more 

detail in the design and implementation chapter of this report). Hijazi [25] presents another 

geometric method, which is topologically driven and ensures robustness. The method 

reduces the problem of joint construction to a 3D convex hull problem. After realizing the 

issues surrounding the Interim Core Scheme, this approach was implemented instead.  

 

Figure 3.6. An example of how the Interim Core Scheme [21] projects branches onto an 

icosahedron and then connects them. Once the mesh is complete it is converted into Loop 

subdivision surface. 



22 

 

 

Figure 3.7: Skeleton to quad dominant mesh [43]. A 
graph is converted into a mesh by first creating 

polyhedrons at the joints and then quadrilating between 
them.

 

 

 

Figure 3.8: Joint constructions posed as a convex 
hull problem. The ends of the branches are 

projected onto the ends of a sphere and then a 
convex hull is formed from the projected vertices 

[25].

 

Most recently Bærentzen [43] presents the Skeleton to Quad-dominant Mesh (SQM) 

technique of constructing meshes from a graph. The method can be thought of as an 

inversion of the methods presented by Ou et al. [21] and Hijazi [25] who first construct the 

branch limbs and then triangulate joint between them. Instead SQM constructs a 

polyhedron at each joint quadrangulate between them to create the branches. The quad-

dominance ensures that the mesh is well formed for Catmull-Clarke subdivision. The authors 

also mention that the method lends its self to Stripe Parameterization, which is a method 

directed at producing parameterizations for tube-like structures that appear seamless [44].  

The properties of the surface representations discussed are compared below in Table 1. In 

the next chapter the design and implementation is presented; reference is made to the 

work of Ou and Bin [19] as well as Hijazi et al. [22].  

Table 3.1: A useful comparison of the surface representations discussed [45]. With the exception 

of parameterization, subdivision surfaces combine the best properties of polygon meshes and 

implicit surfaces. 

 Polygon 

Mesh 

Implicit 

Surface 

Parametric 

Surface 

Subdivision 

Surface 

Accurate no yes yes yes 

Concise no yes yes yes 

Intuitive Specification no no yes no 

Arbitrary Topology yes no no yes 

Guaranteed Continuity no yes yes yes 

Parameterization no no yes no 

Efficient Render yes no yes yes 
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Chapter 4  

Design and Implementation 

The goal of this research project is to develop a fully automatic procedure that converts 

skeletal representations of trees produced by an L-System into a single 3D mesh. Loop 

subdivision is then applied to the mesh to yield a smooth surface. In this chapter the design 

and implementation of this procedure are discussed in detail.   

In context of the existing system (TreeDraw) this module is inserted towards the end of the 

model generation pipeline. It is placed immediately after the L-System compiler and before 

the model renderer. This is clearly illustrates in Figure 1.2. The module has been developed 

with a clean interface to afford painless integration with tree draw. The modified system, 

which is simply TreeDraw with this added component, will be referred to as Yggsrasil for the 

purposes of this report. This distinction makes drawing comparisons between the systems less 

convoluted.  

The input to the module is an LST file, which is a standard produced by the L-System 

compiler. The artefacts produced are a low resolution parameterised control mesh and a 

smoother higher resolution mesh. The high resolution mesh is obtained by subdividing the 

faces and texture coordinates of the low resolution mesh using Loop subdivision. Both the 

low and high resolution meshes are passed on to the renderer. They can be optionally 

exported in Wavefront.OBJ format. This format was chosen due to its simplicity and 

universality. The stages of the procedure can be seen in Figure 4.1 below. 

 

 

Figure 4.1: The steps involved in constructing the model as well as the file outputs 

 

The procedure for generating the mesh is divided into four distinct stages. First, a directed 

acyclic graph representing the tree is constructed from an LST file. An LST file is simply a 

LST File Construct Graph 
Generate Branch 

Segments 
Generate Joints 

Sections 

Parameterize 

Mesh 
Low Res OBJ File Loop Subdivison High Res OBJ File 
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textual description of a tree produced by an L-system. Next, the mesh is generated from the 

graph by constructing truncated cones for each branch and triangulating the joints 

between them. Following that, the mesh is parameterized to allow a bark-like texture to be 

applied. Finally, Loop subdivision is iteratively applied to the mesh to produce a smoother, 

more detailed mesh. Figure 4.1 illustrates the conceptual stages of constructing the graph 

and generating the control mesh.  

 

 

Figure 4.2: An overview of the key steps involved in generating the control mesh. Figures a-c 

illustrate the construction of the graph, this is covered in section 4.2.  Figures d-f illustrate the 

stages of the mesh generation procedure, which is described in section 4.3. 



25 

 

TreeDraw was developed in C++, and makes extensive use of the Nokia QT framework, as 

well as Boost which contains an extensive supporting library of C++ algorithms. The GUI uses 

the widgets provided by QT. For consistency this module was built using these same tools, 

and introduces no other external dependencies. Both LST and OBJ file formats used as 

inputs and outputs are discussed in detail later in the chapter. 

Table 4.1: The libraries and frameworks incorporated in the development of the system. 

LIBRARY  URL 

QT  http://qt.digia.com/ 

BOOST  http://www.boost.org/ 

RAPIDXML  http://rapidxml.sourceforge.net/ 

VMATH  http://bartipan.net/vmath/ 

4.1 Graph Construction 

4.1.1 Introduction 

The first step on the road to generating a full mesh is constructing the graph that represents 

the tree. For this purpose a directed acyclic graph is implemented, where each node 

represents a straight, uninterrupted branch. This graph is constructed from an LST file, which 

is produced by the L-System compiler. The LST file describes the complete skeletal structure 

of the tree for which the mesh will be generated. Before the graph can be passed on for 

mesh generation, the branches must to be trimmed so that none of them overlap. This step 

is shown in Figure 4.2 b. The graph must also be simplified in order to remove joints that 

would overlap with one another once the mesh was created. Such an overlap would 

involve intersecting polygons which appear unnatural, especially after subdivision. The 

graph construction process is detailed below.  

4.1.2 The Graph 

Unsurprisingly the type of graph needed is a tree. More specifically it is a directed acyclic 

graph, where any given vertex can have no more than one parent but any number of 

children. Since each vertex of the graph represents a portion of a branch, the term branch 

will refer to a vertex in the graph for the duration of this chapter. 
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Every branch is defined in three dimensional world-space by its starting position, rotation, 

start radius, end radius, and length. The rotation is relative to the unit vector in the upward 

direction. Every branch contains a pointer to its parent branch, as well as a list of pointers to 

zero or more children. The start position of a branch is the same as the end position of its 

parent. In contrast, there is no constraint placed on the relationship between the start and 

end radii. A child may potentially have a start radius that is larger than its parent's end 

radius, as unnatural as it may appear. Similarly, it is also possible for the branch’s start radius 

to be smaller than its own end radius. As the mesh generation algorithm is intentionally kept 

as general as possible, no attempt is made to rectify these cases. Another issue present in 

the trees generated by TreeDraw is that completely unrelated limbs may intersect. This is 

most apparent in dense branching patterns. Although this appears unnatural, it's a 

procedural generation issue and should be accounted for in one of the earlier modules in 

the pipeline. Furthermore, modifications to avoid such intersections may cause the structure 

of the tree to become incompatible with the distributed leaves which are generated 

concurrently by the leaf generation module. 

4.1.3 Branch Trimming 

To generate a well formed mesh with no intersecting faces, it is important that none of the 

branches meeting at a joint overlap with one another.  For a given joint, all branches initially 

overlap since they all share the same starting point. These overlaps are not to be confused 

with the overlapping limbs described in the previous section. To resolve these overlaps the 

starts and ends of branches must be translated along their axes by a calculated offset. 

Initially, a method proposed by Hijazi et al. [25] was implemented for calculating these 

offsets. This method calculates the offsets using a series sphere intersection test, where the 

end of every branch is represented as a half-sphere. The idea is to keep shifting the spheres 

down the axes of the branches until none of them intersect. The distance each sphere has 

to be shifted is the offset for that branch. This can be seen in Figure 4.3. 

Although effective, this method is both inefficient and inaccurate. Instead, a geometric 

approach was implemented. To find the offsets, the point at which every pair of branches 

intersect must be found. The offset for a branch is then the distance of its furthest 

intersection point with another branch. There are five possible cases for calculating the 

intersection between two branches. These are based on the dot product between the two 

branches. In this case the dot product is taken between the unit vectors that define the 

axes of the branches.   
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Figure 4.3: Half-sphere method of for offsets proposed by Hijazi et al. [25] 

The dot product of vectors A and B can be interpreted as the length of A after it has been 

projected onto B. The dot product between two unit vectors has a range between -1 and 1. 

When the vectors form an acute angle, the dot product between them lies between 0 and 

1, when they are at an obtuse angle the dot product lies between -1 and 0. The five 

potential cases are described below and illustrated in figure 3. The first three are trivial, while 

last two require some basic trigonometry. Although this method was developed 

independently, a similar method of branch trimming is presented by MacMurchy [14].  
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Figure 4.4: The five possible cases for calculating the minimum offset required to avoid 

intersection between two branches. 

1 The dot product is 0: This implies that the branches are orthogonal to one another. In 

this case offset of A is simply equal the radius of B. 

 

2 The dot product is -1: This implies that the Branch B is a perfect continuation of 

branch A, and as such the offset between them is zero. 

 

3 The dot product is 1: This implies that the Branch B is perfectly aligned with branch A, 

and as such no solution exists in which the branches do not intersect. In this case the 

offset is simply assumed to be zero and the joint generation process is marked as 

failing. A graph where this case occurs is considered bad input. 

 

4 The dot product lies between 0 and 1: The branches intersect at an acute angle to 

one another. In this case offsetA is calculated as:  

 

offsetA  =   
𝑅𝑎𝑑𝑖𝑢𝑠𝐴

𝑡𝑎𝑛 𝛼
   +    

𝑅𝑎𝑑𝑖𝑢𝑠𝐵

𝑠𝑖𝑛 𝛼
  , 

𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑠 

5 The dot product lies between 0 and -1. The branches intersect at an obtuse angle to 

one another. In this case 𝑂𝑓𝑓𝑠𝑒𝑡𝐴 is calculated as: 

offsetA  =  
𝑅𝑎𝑑𝑖𝑢𝑠𝐴

𝑡𝑎𝑛(𝜋− 𝛼)
   , 

𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑏𝑟𝑎𝑛𝑐ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑠 

In both case 4 and case 5, 𝑂𝑓𝑓𝑠𝑒𝑡𝐵 can be calculated using Pythagoras' Theorem: 

offsetB  = √𝑅𝑎𝑑𝑖𝑢𝑠𝐴2 + 𝑅𝑎𝑑𝑖𝑢𝑠𝐵2+ 𝑂𝑓𝑓𝑠𝑒𝑡𝐴2 
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4.1.4 Graph Simplification 

During the trimming phase it may happen that the offsets from the start and end of a 

branch cross over. This occurs when two joints are too close together and implies that there 

insufficient space to construct both. If this issue is not resolved it will lead to an intersection of 

the polygons that form the joint, and potentially polygons that are entirely occluded by the 

two joints. To account for these situations it is necessary to collapse the branch at which the 

crossover occurs. Collapsing a branch refers to deleting the branch and adding its children 

to the parent's list of children. As such the start of every child is shifted to the end position of 

their new parent. An example of this can be seen in Figure 4.5. The end points of the 

branches are never altered and in this way the branch tips of the tree remain fixed. This 

usually leads to branches becoming longer. The motivation for keeping the tips in the same 

position is that the leaf generation module [Donovan] uses the same LST file to distribute the 

leaves. If the positions of the tips are changed then the leaf placement will be inconsistent 

with the mesh. Since two joints have now merged it is necessary to perform the trimming 

step once again. This is because the minimum offsets needed to avoid intersection may 

have increased.  

This method of simplification is applied to all of the branches in the graph in a ‘depth first’ 

fashion. The reason for this is that intersections that occur deeper in the graph may be 

resolved from addressing shallower intersections, and avoid unnecessary branch collapse 

operations.  After the collapse has taken place the trimming procedure is applied once 

again to all the branches that were affected. Trimming updates the offsets so branches that 

were previously acceptable may now require collapse. The algorithm cycles between 

trimming and collapsing branches until no more collapses occur, at which point the graph is 

considered stable. The number of iterations depends on the topology of the graph. An 

extra iteration is required when a collapse causes another intersection to form. 

 

Figure 4.5: An example of a graph that has been simplified, and how the structure is undesirably 

affected 
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Although this method is effective for simple intersections, the graph can potentially lose key 

structural features in degenerate cases. A case that produces particularly undesirable 

results is depicted in Figure 4.5. In this case, a characteristic branching structure, known as 

alternate branching is lost. The previous system classified all trees as having either opposite 

or alternate structures. Losing such structure essentially changes the species of the tree.   

4.1.5 LST file format 

As previously mentioned in the design chapter, the input to this module is an LST file. This is a 

textual description of the tree produced by the L-system compiler. The LST file encodes a 

depth first walk of the tree through a series of pushes and pops on a state stack. The set of 

operations used is a subset of those defined for the lpfg plant modelling system [3]. A simple 

example of a LST file is depicted in Figure 4.6. The LST format begins with a single line 

containing the word “LST” followed by the format version number. The remainder of the file 

lists the operations and their parameters. Each operation is listed on a new line. Empty lines 

are ignored and have no significance. The operations that occur correspond approximately 

to the OpenGL render context where state matrices containing 3D transformations are 

pushed and popped off of a stack. These operations are described in Table 1: 

Sample LST file  

LST 0.1 

 

RotRel3f(0.3, 0, 0, 1)  

Cylinder(1, 1, 10) 

MovRel3f(0, 10, 0)  

SB() 

RotRel3f(-1.0, 0, 0, 1)  

Cylinder(1, 1, 5) 

MovRel3f(0, 5, 0) 

RotRel3f(-0.6, 0, 0, 1) 

Cylinder(1, 1, 5) 

EB() 

SB() 

RotRel3f(1.0, 0, 0, 1)  

Cylinder(1, 1, 5) 

MovRel3f(0, 5, 0)  

RotRel3f(0.6, 0, 0, 1)  

Cylinder(1, 1, 5)  

MovRel3f(0, 5, 0) 

EB() 

MovRel3f(0, 5, 0)  

RotRel3f(0.6, 0, 0, 1)  

Cylinder(1, 1, 10)  

MovRel3f(0, 10, 0) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.6: A sample LST file and the model that it represents 
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Table 4.2: Operations that occur in the LST file format 

Operation  Action 

SB()  Push the current location onto the stack 

EB(): 

 

 Set the current location to the location on the 

top of the stack and then pop that location 

off the stack. 

MovRel3f(x, y, z)  Translate the current position by a 3D vector 

with components x, y, z. 

RotRel3f(angle, x, y, z)  Rotate the current orientation around the axis 

(x, y, z) provided by the stated angle. 

Cylinder(startRadius, endRadius,  length) 

 

 Create branch (truncated cone) beginning at 

current position and continuing along the 

vector defined by the unit up vector scaled 

by the length and rotated by the current 

rotation.  

4.1.6 LST Parser and Graph construction 

The structure encoded in the LST file is most easily extracted using three stacks containing 

positions, orientations, and branches that have already been constructed. A 3D vector is 

used to store position, a standard 3x3 affine rotation matrix represents the rotation, and the 

branches are stored as a C++ struct. Initially the current position is set as the origin, the 

orientation is an identity matrix and the current branch is set to null.  

The parser processes the operations from top to bottom. Whenever the cylinder() operation 

is encountered a new branch must be constructed. The branch is defined by its start radius, 

end radius and length. Its starting position and orientation are the values at the top of the 

relevant stacks. Its parent is set to the branch at the top of the branch stack. The RotRel3f() 

operation describes an axis-angle rotation that must be composed with the current 

rotation. The MoveRel3F() operation provides a 3D vector by which the current position must 

be translated. Whenever the SB() command is encountered the current position, rotation 

and branch are pushed onto their respective stacks. EB() indicates the opposite, the top 

values of the stacks are popped off and stored as the current position, rotation and branch. 

As the graph is constructed the branches are stored in a C++ std::vector in depth first order. 

This is convenient as all operations that are applied to the graph, such as simplification, take 

place in this order. The final output of the parser is a directed acyclic graph, an example of 

which can be seen in more detail in Figure 4.2 c. 
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4.2 Mesh Generation 

4.2.1 Introduction 

In this section the algorithms that convert the graph into a mesh are presented. This process 

has two distinct stages. First, all the branch segments between the joints are created. Once 

this has taken place the joint sections of the model are generated by triangulating between 

the end vertices of the branch sections. An illustration of this can be seen in in Figure 4.2 (d-

f). The mesh generated by this process is continuous except at the base and branch tips, 

which are left open. 

4.2.2 Generating the branch segments 

The first step towards generating a complete mesh is to construct the branch sections that 

lie between the joints.  Each branch is modelled as a truncated cone; this can be thought 

of as a cylinder whose end radius is shorter than is start radius. The process of constructing a 

branch involves three steps. First, the required number of segments is calculated. Next, all 

the vertices are created as sets of ordered loops equal in total to the number of segments 

plus one. Finally, faces are generated between the corresponding vertices of the loops. 

These three steps are illustrated in the Figure 4.7 below. 

 

Figure 4.7: Steps involved in generating a single branch. 
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 The number of vertices used to construct a loop can be any integer larger than three, so 

long as all loops in a branch are created with the same integer. The number of vertices in 

the figures varies between four and eight; however the loops in the final implementation 

are constructed with only four vertices. This number is selected with two considerations in 

mind. First, it is desirable to keep the mesh as coarse as possible to improve performance 

and save memory, extra resolution can always be obtained through subdivision. Second, 

the subdivision process tends to shrink the surface away from the control mesh. This is 

because an approximating subdivision scheme was implemented rather than an 

interpolating one. With a coarser control mesh, more shrinkage occurs. It was decided by 

inspecting the final surfaces that four vertices per loop provided the best trade-off between 

coarseness and shrinkage. 

Calculating the Number of Segments 

Each branch could be modelled by one long segment using only two vertex loops, one at 

the start and one at the end. At face value this approach seems favourable as it leads to a 

lower polygon count. However, the long thin faces that are produced do not provide 

enough control for subdivision. This is because during the subdivision process the original 

vertices are pulled towards their neighbouring vertices. The further away a neighbouring 

vertex, the greater its effect on the vertex being pulled. This effect is illustrated in Figure 4.8. 

In the context of the final subdivided model, this leads to an exaggerated blend between 

the branches. To account for this, the branch section is tessellated based on the relationship 

between its length and average circumference. As a result, longer branches with a lower 

circumference are more finely tessellated than shorter branches with larger circumferences. 

The following formula is used to calculate the optimal number of segments. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑎𝑑𝑖𝑢𝑠 =  
𝑆𝑡𝑎𝑟𝑡𝑅𝑎𝑑𝑖𝑢𝑠 +  𝐸𝑛𝑑𝑅𝑎𝑑𝑖𝑢𝑠

2
 

𝑁 = ⌈
𝐵𝑟𝑎𝑛𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑎𝑑𝑖𝑢𝑠 ∗ 𝜋
⌉ 

 

 

Figure 4.8: Longer faces provide less control when subdivided. 
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Constructing the Vertex Loops 

Now that the number of segments, N, is known, N + 1 vertex loops are constructed. A vertex 

loop is a set of vertices that lie in the same plane. This plane is always orthogonal to the 

branch axis. The branch axis is simply the vector that runs from the start of the branch to the 

end. The vertices in a loop are connected sequentially. All vertices in a loop are also placed 

equidistant from the branch axis.  The loops are constructed by linearly interpolating 

between the start and end position of the branch. The start and end radii are also 

interpolated. As the loops are created they are placed in a loop list, which is ordered from 

the start of the branch to the end.  

Constructing the Faces 

Once all the vertex loops are initialized the faces can finally be constructed. These faces 

can be either quadrilaterals or triangles. Triangles were chosen since the mesh is generated 

with the intention of applying Loop subdivision. The algorithm for constructing the faces 

between the loops is outlined below in Algorithm 1. This approach produces vertex 

valances of six which is the regular valence for loop subdivision. Regular and extraordinary 

vertices are discussed in the background chapter on subdivision surfaces. A subdivision 

scheme produces its highest level surface continuity at regular vertices, in the case of Loop 

subdivision this is C2 continuity.  Before exiting the routine, the first and last vertex loops must 

be stored in the branch node as they will be used to construct the joint.  

Algorithm 1: Faces Construction  
Input: loop_list 
for i ← 0 to n -1 
 loopA ← loop_list[i] 
 loopB ← loop_list[i+1] 

len ← number_of_sides 
 for j ←  0 to len - 1 
  Vertex A ← loopA[j] 
  Vertex B ← loopA[(j+1)%len] 
  Vertex C ← loopB[j] 
  Vertex D ← loopB[(j+1)%len] 

 

  Create Face ABC 
  Create Face BDC 

end for 
end for 

Figure 4.9: Two faces constructed between the 

edge loops 
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4.2.3 Joint Construction 

Joint construction refers to generating the sections of the mesh which connect the 

branches. This step can be seen in Figure 4.2e. Most of the research performed during this 

project was directed towards developing a robust joint construction algorithm. Although 

many papers exist on constructing such joints, it is difficult to conclude from the results 

provided which solution is optimal. Another factor is how concisely the algorithms are 

presented. Many methods researched are outlined in chapter 3. In the end two methods 

were implemented.   

The first was the Interim Cores Scheme proposed by Ou and Bin [21]. The results presented in 

their paper are appealing and the algorithm is described explicitly. It is a complex algorithm 

to implement and consumed the bulk of development time. Only after it was completed 

was it realized the algorithm is essentially a solution to 3D convex hull construction, only it 

approached as a special case of point cloud triangulation. The rules presented for 

triangulation produce reasonable results, however, cannot guarantee robustness for every 

possible edge case. Later, a more recent paper was discovered, in which joint construction 

was in fact solved using convex hulls. This lead to the previous algorithm being discarded, 

and a convex hull algorithm to be implemented in its stead. The end result is a simpler and 

more robust final solution. Due to significant amount of development time dedicated to the 

Interim Core Scheme, the algorithm is still included in this chapter. For interest’s sake, the 

performance of both algorithms are analysed in chapter 5. 

 

Figure 4.10: The interim Core Scheme. The core refers to the icosahedron that can be seen in the 

centre of the joints. The branches are projected onto a sphere, and then a joint is triangulated 

using the vertices at the start of the branches, as well as select vertices from the icosahedron. 

4.2.3.1 The Interim Core Scheme (ICS) 

Initially the entire ICS algorithm was implemented as described by Bin and Ou [21]. The core 

alluded to in the title is an icosahedron onto which the ends of the branches are projected. 

The joint mesh is the triangulated between the vertices at the start of each branch. A few of 

the vertices in the icosahedron are also selected to provide extra intermediate structure. 

Unfortunately the scheme was never designed to be fully automatic. If the icosahedron is 

not optimally oriented by hand then the results produced are often undesirable.  
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Furthermore, in many cases the structure added by the core is redundant. This can be seen 

in the mesh on the far right of Figure 4.10f; the two extra vertices in the middle of the joint do 

not add any useful structure. What is worse is that if icosahedron was orientated differently it 

could add undesirable structure, creating a bulge or an indentation. Due to these issues the 

actual core was discarded, though the triangulation rules presented by Ou and Bin [21] are 

still implemented.  

 

Figure 4.11: An overview of the joint triangulation process. Every edge in every loop must form a 

triangle with a vertex in another loop. If a triangle is formed then the loop must be reorganized. 

Loops are processed in clockwise order. The dark lines indicate the edge loops and how they 

are updated during the triangulation process. Figure b shows an occurrence of a double edge 

(the same edge repeated e.g. {…AB, BA…}) which must be detected and removed.  
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The input to the algorithm is a list of vertex loops. These are the vertex loops that define start 

of each branch.  From these vertex loops, a list of corresponding edge loops is created. 

Each edge is made of two sequential vertices from a vertex loop. All of the edges in these 

loops have only one adjacent face and are ordered by their connectivity.  

The algorithm processes each edge one at a time, loop by loop. For every edge the 

algorithm selects the best vertex with which to form triangular polygon. The set of vertices 

with which an edge can form a valid face are those that are visible to both of the vertices 

that compose the edge. Two vertices are said to be visible to one another if they can form 

a valid edge. A valid edge is one that will lead to a convex joint with no intersecting 

polygons or holes. Every vertex has a corresponding list of visible vertices. A notion closely 

related to the concept of visible vertices is what Ou and Bin describe as taboo vertices. Two 

vertices become taboo to one another if the edge formed between them intersects a 

face. When two vertices become taboo they are removed from each other’s visible vertex 

list. Every time a new face is added two pairs of vertices become taboo. This is illustrated in 

Figure 4.12. Initially the visible list of a vertex contains every other vertex. The first vertices to 

become taboo are the ones that share the same initial edge loop, as these can never form 

valid triangles. As the algorithm progresses more and more vertices become taboo, and the 

visible lists become gradually smaller. 

 

Figure 4.12: two pairs of vertices become taboo with every triangle that is formed. 
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In order to work out which vertices must become taboo when a face is formed, the edge 

loops must always be ordered clockwise and only contain open edge. To enforce this, 

every time a face is added the loop must be reorganised. Sometimes a double edge will 

form in the loop, these must be removed. As an example consider the following loop: {…AB, 

BG, GB, BC…}. I this loop edged BG and GB are actually the same edge. Consequently, 

they form a double edge. To remedy this, the loop must be reorganised to be {… AB, BC …}. 

Figure 4.13 illustrates how the loops are reorganised after every face is created.  

 

Figure 4.13: Reorganization of loops after every triangle is formed. The red and blue lines indicate 

the edge loops. As new triangles are formed, the edges loops are updates. A dotted line 

indicates a double edge that was detected and removed.
 

Once all the loops have been processed, the algorithm checks if the joint is complete. 

Completion occurs when every edge in the joint mesh is incident on two faces.  An edge 

with only one face implies that there is still a hole in the joint. To check for completion every 

edge in the joint mesh is inspected. If the joint is found to be incomplete then a new 

iteration of the algorithm begins, this time with the reorganised loops. An overview of this 

algorithm appears in Algorithm 2. 

The set of vertices with which a face can be formed are the vertices that are visible to both 

of the edge’s vertices (the intersection of their visible lists).  The best vertex selected from this 

list must meet two criteria.  

1) Largest Opposite Angle: The primary rule for selecting a vertex to pair with an edge is 

a simple geometric principle. From the set of shared visible vertices, always choose 

the vertex that forms the largest opposite angle with the edge.  This produces good 

results, however there are occasions when this is not the best choice. 
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2) Dot product test to avoid inward facing triangles: Although the principle of selecting 

the largest opposite angle is good heuristic, situations will arise where the chosen 

vertex that meets this criteria undesirable. This occurs because the principle of 

selecting the largest angle does not take any topological information into account. 

To avoid forming faces that are concave with respect to the joint centre, and 

therefore in contravention of a convex hull, a dot product test must be performed 

between the centre normal and the normal of the potential face. The centre of the 

joint is defined as the midpoint of all the vertices. This is described in more detail in a 

subsequent section. The centre normal is defined as the unit vector from the vertex 

being examined, to the centre. The face normal is calculated by normalizing the 

cross product between the potential edges. It is important that the edges are 

crossed in the correct order to ensure that the normal faces outward. If the dot 

product is less than or equal to zero then the face formed will not meet the convex 

requirements 

𝐶𝑒𝑛𝑡𝑒𝑟𝑁𝑜𝑟𝑚𝑎𝑙  =  
𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝐶𝑒𝑛𝑡𝑒𝑟 −  𝑣𝑒𝑟𝑡𝑒𝑥

‖𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝐶𝑒𝑛𝑡𝑒𝑟 −  𝑣𝑒𝑟𝑡𝑒𝑥‖
 

 

𝐹𝑎𝑐𝑒𝑁𝑜𝑟𝑚𝑎𝑙 =  
𝐸𝐴 ×  𝐸𝐵

‖𝐸𝐴 ×  𝐸𝐵‖
 

 

𝑑𝑜𝑡 =  𝐶𝑒𝑛𝑡𝑒𝑟𝑁𝑜𝑟𝑚𝑎𝑙 ⨀ 𝐹𝑎𝑐𝑒𝑁𝑜𝑟𝑚𝑎𝑙        

 

Figure 4.14: Left: Calculating the face normal. Right: A valid face and an invalid face based on 

the dot product rule. 

 

Preparing the Edge Loops 

As mentioned earlier, the algorithm requires a list of edge loops representing the incoming 

branches. These edge loops are derived from the vertex loops created during the 

construction of the branches. For the algorithm to be successful the edge loops that are 
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submitted for triangulation must meet the following criteria: The edges of a given loop must 

be ordered clockwise and lie on the same plane. All loops must be equidistant and 

tangential to the joint centre. No loop may contain any double edges. Although this final 

rule is met initially, double edges will occur as more faces are created. Consider the loop {... 

AB, BF, FB, BC ...}, edges BF and FB are the same edge. This must be detected and the loop 

must be reorganised to become {...AB, BC...}. An example of a double edge and it removal 

is illustrated in figure 19(c-e).  

The joint is effectively constructed as a convex hull, however, sometime the loops that are 

submitted are not suitable for convex hull construction. This often occurs in complex 

bifurcations, where the offsets calculated in the graph construction stage exhibit great 

variation. To account for this, the loops must be projected onto a sphere and orientated 

tangentially. The radius of this sphere is defined as the largest offset of any of the branches. 

The sphere centre is the midpoint of all the loop centres, and a loop centre is the midpoint 

of the loop vertices. The joint can now be constructed. Once complete all vertices are 

translated back to their original positions. This process is illustrated below in figure Figure 4.15 
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Figure 4.15: Figures a, b and c show how the loops are transformed to meet the criteria for joint 

triangulation. Figure d depicts how the triangulated joint. In figure e the vertices are transformed 

back to their original positions.  

Algorithm 2: Joint construction based on the Interim Core Scheme  
 

Input: edge_loops 

complete ← false 

while not complete: 

 for every loop in edge_loops: 

for every edge in loop: 

if  edge has only one face: 

find a vertex from another to form a face with the  edge 

create new face from the edge and vertex 

reorganise loop 

end if 

end for 

end for 

 

complete ← true 

for every loop: 

for every edge: 

if  edge has only one face: 

complete ←  false 

end if 

end for 

end for 

end while 

 

4.3.3.2 Convex Hull Construction - Randomized Incremental Algorithm 

During the implementation of the Interim Core Scheme it was discovered that the problem 

of triangulating the joints was, in fact, a convex hull problem in 3D. This was confirmed by 

Hijazi et al.  [25] who formally pose joint construction as a hull construction problem. Not 

only is this approach significantly less complex, it is also highly robust. This is in contrast to the 

Interim Core Scheme, which cannot guarantee an absence of edge cases where the 

triangulation rules will fail.  

The convex hull of a set of points is the smallest convex set that contains all of the points 

[46]. The algorithm implemented is the Random Incremental Algorithm first described by K.L. 

Clarkson and P.W. Shor in 1989 [47]. This algorithm was chosen for its simplicity as little 
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development time remained. A more efficient method, such as Quickhull would have been 

preferable. 

 

Figure 4.16: Convex Hull Construction with the Randomized Incremental Algorithm 

The algorithm begins by removing four random non-co-planar vertices from the set. From 

these four vertices a tetrahedron is constructed. As the algorithm progresses, faces are 

deleted from and added to the tetrahedron, expanding it to a polyhedron that will 

eventually form the final convex hull. To achieve this, every remaining vertex is examined to 

see if it lies within the current hull. If it does then it is discarded. If it does not then the hull 

must be altered to include it. For this to occur, the triangles that face the vertex must be 

deleted. These triangles are found by examining the dot product between the face normal 

and the vector from the triangles midpoint to the vertex under consideration. If the dot 

product is greater than zero then the triangle faces toward the vertex and must be deleted. 

After deleting these triangles, several edges are exposed, now having only one incident 

face. New triangles are formed from the edges and the vertex being incorporated. The hull 

now includes the vertex that previously lay outside. This is repeated for every remaining 

vertex.

 

Figure 4.17: Constructing a convex hull for a set of vertex loops. 
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In the context of joint construction the set of points for which the hull must be constructed 

are the vertices at the start of each branch. As with the Interim Core Scheme 

implementation, these vertices are submitted as a set of vertex loops. Once the hull has 

been constructed the faces that form inside the loops are deleted so that the branches 

can be attached, The Randomized Incremental Algorithm is outlined below in Algorithm 3 

Algorithm 3: Randomized Incremental Algorithm 

Input: vertex_list 

 

select 4 no co-planar vertices and construnct a tetrahedron 

remove the 4 vertices from vertex_list 

convex hull ← tetrahedron 

for each vertex in vertex_list: 

for each face in convex_hull: 

visiblityVector ← vertex – face_midpoint 

dotvalue ← DotProduct of visiblityVector with face_normal 

if dotvalue > 0: 

delete face 

end if  

end for 

 

for each edge in convex_hull: 

if edge has only one incident face: 

create new face defined by the vertex and the 2 edge vertices 

add the face to the convex_hull 

end if 

end for 

end for 

 

4.2.4 Mesh Data Structure 

For the mesh to be generated there needs to be a corresponding data structure. In its most 

elemental form a mesh can be represented as a list of vertices and a list of faces indexed to 

the vertices that define them. In order to render the mesh with shading, every vertex must 

have a corresponding normal, and if a texture is to be applied to the mesh, then a two 

dimensional texture coordinate is required for every face point. Both triangle and 

quadrilateral faces are supported in our implementation. 

For the purposes of simplicity the mesh is represented in an object-oriented fashion, where 

every vertex stores its position and normal, and every face stores a list of pointers to the 
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vertices that define it. Each face must also store a list of texture coordinates which are 

ordered relative the vertex list.  Texture coordinates are stored in the face rather than the 

vertices due to the occurrence of seams. A seam occurs when faces share vertices, but 

reference entirely different areas of the 2D texture space. The position and normal of a 

vertex are both stored as a 3D vector, while a 2D vector is used to store a texture 

coordinate. A vertex's normal is calculated as the average of its surrounding face normals. 

For a given face consisting of vertices A, B and C; its face normal is calculated as the 

normalized cross product between the edge BA and the edge BC.  The vertex normals are 

used by OpenGL to perform smooth shading when rendering the mesh.  

 

Figure 4.18: An illustration of the connectivity between the faces, edges and vertices of the mesh 

data structure 

To simplify the implementation of surface subdivision, a C++ struct is used to represent 

edges in the mesh. When considering a mesh, or any other data structure, there is always a 

trade-off between performance and memory use. Mesh representations such as the Split-

Edge data structure and Winged-Edge data structure are good choices for reducing the 

memory footprint as they store the minimum number of pointers needed to reach any 

component of the mesh from any other component. The drawback of these structures, 

however, is that they greatly increase the implementation complexity. They also have a 

performance overhead because, on average, more pointer traversals are necessary to 

access desired components. For the purposes of this implementation, a well-connected 

graph was used. Faces index their edges and vertices, edges index their vertices and faces, 

and vertices index their faces and edges. This is illustrated in Figure 4.18 below.  

Dynamically updating this structure is a complex process and can make the simplest of 

algorithms cumbersome.  As such the data structure is completely rebuilt after ever 

significant process. For example, an iteration of Loop subdivision splits all the edges and 

faces, so the data structure must be rebuilt before the next iteration. Although this is a costly 
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overhead, it is acceptable since performance is not the main concern of this research 

project. 

Sample OBJ file: A quadrilateral formed from two triangles 

g plane 

v 1.118196 0.439762 -0.508643 

v 0.914742 0.439762 1.491357 

v -1.085258 0.439762 1.491357 

v -1.082957 0.439762 -0.508643  

# 8 vertices 

 

vn 0.0000 1.0000 -0.0000 

# 1 normal 

 

vt 0.000575 1.000000 

vt 1.000000 1.000000 

vt 0.997600 0.002400 

vt 0.004688 0.005600 

vt 0.003200 0.996000 

vt 0.999425 0.000000 

# 6 texture coordinates 

 

f 4/1 3/2 2/3 

f 1/4 4/5 2/6 

# 2 face 

4.2.5  Wavefront .OBJ model format 

The format used for exporting the final models is the Wavefront OBJ file format, which is a 

well-documented, open standard for representing geometry. It was chosen for its simplicity 

and ubiquity. The format can store multiple meshes per file, each of which is represented by 

plain text lists of vertices, normals, texture coordinates and faces. The format begins by 

listing all of the vertices in the mesh. These are indicated by the character ‘v’ followed by 

three floating point values that correspond to (x, y, z). The vertex normals, denoted as ‘vn’ 

are listed similarly. Next, the texture coordinates are listed as ‘vt’, with their values 

corresponding to (u, v, w). Finally the faces are defined. Indicated by the letter ‘f’, they are 

followed by one or more face points. A face point consists of v/vt/vn triplet, which index 

into the vertex, texture and normal lists respectively. A pitfall to be aware of is that the 

indexing starts at one, rather than zero.  
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Algorithm 4: Overview of the Mesh Generation Algorithm 

Input:  rootBranch 

 

construct branch faces for rootBranch 

branchStack ←{} 

branchStack.push(rootBranch) 

currentBranch  ←null 

while branchStack not empty 

currentBranch ← branchStack.pop() 

for each child in currentBranch 

construct branch section child child 

branchStack.push(child) 

end for 

if branch has children 

prepare the edge loops 

construct joint between branch and children 

re-triangulate the joint 

set the loop vertices back to their original positions 

perform edge collapses on the joint 

end if 

end while 
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4.3 Parameterization 

4.3.1 Introduction 

Parameterization is an important aspect of any mesh generation system as it allows a 

texture to be mapped to the surface. It is often also used for bump, normal and 

displacement mapping. Mesh parameterization refers to a piecewise linear mapping 

between the faces of the mesh and a simpler domain, usually a 2D plane. Texture mapping 

associates every point on the mesh's surface with a corresponding point in a texture. 

Regardless of the image dimensions the mapping domain always lies between [0, 0] and [1, 

1] where [0, 0] is the lower left corner of the texture. The components of the two dimensional 

orthogonal basis used to describe texture space are U and V. These correspond to the X 

and Y axes respectively, because of this parameterization sometimes referred to as UV 

mapping. 

  

Figure 4.19: Left: A model that has not been parameterized. Right: A parameterized model with 

a texture applied.  

The automatic parameterization of a general mesh is a challenging problem that easily 

warrants a research project of its own. CGAL (http://www.cgal.org/), an open source library 

of common graphics operations, was initially investigated as a potential solution to the 

parameterization of the control mesh. Unfortunately, bark textures have an added 

constraint of directionality, necessary to produce the vertical striations present in nearly all 

bark.  Since the solutions provided by CGAL are general, they do not take this constraint 

into account. If CGAL were used to derive a parameterization then the striations would 

wrap around the branches in arbitrary, unpredictable ways. 
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Instead, a method of parameterization is integrated directly into the mesh generation 

process. This allows the topological structure of the tree to be considered, so that the 

striations in the bark texture are mapped along the length of a branch. In accordance with 

the stages of the mesh generation process, first the branch sections are parameterized, 

then the joints sections. The intention is to produce as few seams as possible, minimise 

stretching and map the striations along the length of the bark. 

The texture that is applied to the model is a square seamless sample of bark. The term 

seamless implies that should two of the samples be placed adjacent to one another, then 

the boundary where one sample ends and the next begins will be imperceptible. An 

example of such a texture is displayed in Figure 4.20. The texture synthesis module, 

developed by Ryan Mazzolini [7], is responsible for generating seamless textures for the 

system. Given a small sample of bark, such as a photograph, the module generates a 

seamless (usually a larger) texture that is recognisably similar to the sample. The texture 

synthesis technique employed is often referred to as discrete optimisation [48] 

 

Figure 4.20: An example of a seamless texture that could be applied to the model. The white 

squares indicate the lower left corner of the texture 

4.3.2 Parameterization of the branch segments 

The first faces of the mesh to be parameterised are the branch sections. Since a branch is 

modelled as truncated cone, which is topologically equivalent to a cylinder, texture 

coordinates are assigned branches using a straightforward cylindrical parameterisation. This 

is achieved by creating loops of texture coordinates along the corresponding vertex loops. 

The U component is calculated based on a vertex' loop index. The value of V is interpolated 
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along the length of the branch, repeating with every 2 segments. This causes the texture to 

be tiled along the length of the branch. When the faces are created they are assigned the 

texture coordinates corresponding to the vertices that define them. This is illustrated in figure 

17. 

 

Figure 4.21: This is an illustration of how a texture is wrapped around a branch, as well as how the 

faces of the branch are unwrapped in texture space. For simplicity the faces are depicted as 

quadrilaterals. However, in the final implementation they are in fact tessellated into triangles.  

 

It was explained in section 3.2.1 that the branches are tessellated into a number of shorter 

segments based on the following formula: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑎𝑑𝑖𝑢𝑠 =  
𝑆𝑡𝑎𝑟𝑡𝑅𝑎𝑑𝑖𝑢𝑠 +  𝐸𝑛𝑑𝑅𝑎𝑑𝑖𝑢𝑠

2
 

𝑁 = ⌈
𝐵𝑟𝑎𝑛𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑅𝑎𝑑𝑖𝑢𝑠 ∗ 𝜋
⌉ 

Since N is derived by dividing the branch length by half the circumference, every two 

segments unwrap approximately to a square. The dimensions are usually not uniform (ie not 

precisely a square) due to the rounding of N). Using the average radius means that some 

squashing will occur near the fatter starting segments and some stretching will occur near 

the thinner ending segments. However, these artefacts are hardly noticeable.  

4.3.3  Parameterization of the Joint Sections through Interpolation 

With the branch sections parameterized, all that remains is to parameterize the faces that 

form the joints. This, however, is a difficult problem to solve. Seams will inevitably be 

introduced, since the surface of a joint is not topologically equivalent to a planar texture 
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domain. To parameterize these faces, the textures coordinates of faces that have already 

been parameterized are interpolated across adjacent faces that have not yet been 

parameterized. This method keeps stretching to a minimum, and preserves the directions of 

bark striations. 

The algorithm for interpolating the coordinates is as follows: Coordinates are assigned on a 

per triangle basis. Every triangle that has not yet been parameterized selects the adjacent 

triangle with the longest shared edge. If the selected adjacent triangle is not itself yet 

parameterized, then the second longest edge is examined and so on. If the selected 

triangle has been parameterized then the texture coordinates are interpolated across the 

vertices of the un-parameterized triangle. An example of this can be seen in Figure 4.22c. 

The coordinates that are interpolated always lie outside the texture space. To account for 

this wrapping conditions are applied to the coordinates, such that if U or V are greater than 

1 or less than 1, then 1 is subtracted or add added respectively. This is not noticeable as the 

bark texture used is seamless.  

 

Figure 4.22: the various states of parameterization. Left: directly after the joint has been 

triangulated. Middle: After the edges of the joint have been collapsed many of the un-

parameterized faces have been deleted. The final face is parameterized by interpolating the 

texture coordinates from the top left branch. 

4.3.4 Collapsing edges 

Unfortunately seams must be introduced somewhere. This method of parameterisation 

leads to multiple zigzagging seams occurring at the joints. In an attempt to reduce the 

number of seams a post process step was implemented that collapses the edges of the 

joint mesh. An edge collapse refers to merging the two vertices that make up an edge into 

a new vertex, which is a weighted average of the vertices being merged. Every time an 

edge collapse occurs, the faces on either side of the edge are also implicitly collapsed. 

Collapsing edges reduces the number of triangles that need to be parameterized through 

interpolation. Figure 4.22 shows what the joint looks like before and after performing edge 

collapses. In special cases all of the edges in the joint can be collapsed leaving no triangles 
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left to be parameterized through interpolation. A case where this occurs is planar 

bifurcations. Most of the time, however, there are a few isolated faces which must still be 

parameterized using the interpolation method described above. A second benefit of 

performing edge collapses is that if yields rounder curves between branches on the limit 

surface, this is illustrated in Figure 4.23. 

 

 

Figure 4.23: After collapsing the edges, the new topology will produce rounder curves on the 

limit surface when subdivided. The curves are illustrated in yellow. 

 

The heuristic for collapsing edges is simple: Always select the shortest edge. To assist in this 

process the edges are stored in a priority queue based on their length. An edge cannot be 

collapsed if its vertices share the same initial boundary loop. This ensures that the joint 

maintains its overall structure since none of the initial edge loops that belong to the 

incoming branches are lost.  

Unfortunately using the edges length as the heuristic turned out to be naïve. Although the 

method produced pleasing results in most cases, edge cases were encountered where the 

method flat out failed. Such a case is demonstrated in the figure below. In favour of 

robustness the edge collapse post process was left out of the final system. Despite this the 

method was an interesting avenue to exploration and a detailed explanation of the edge 

collapse algorithm is found in appendix B. 

 

Figure 4.24: An example of a degenerate edge collapse. This occurred as a result of the large 

variation in the branch radii. 
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4.3.5 Limitations 

Despite the simplicity of this parameterization method, the results produced are reasonable. 

Nonetheless, there are shortcomings that must be discussed. The first of these is that the 

parameterization does not produce a one-to-one mapping. This means that although every 

point on the surface of the mesh maps to exactly one location in the texture, the reverse is 

not true; every location on the texture maps to multiple different locations on the mesh 

surface. This is both good and bad, depending on the context. Very often it is desirable to 

reuse the same texture space in order to save texture memory. Besides memory efficiency, 

reusing texture space means that more texture detail can be seen on any given part of the 

mesh. The downside is that reusing the same texture space introduces repetition if the bark 

texture has any distinct features. Furthermore, an artist would be prevented from loading 

the model into a 3D package to detail to specifics area of the mesh. However, above all 

these limitations is the fact that the mesh is not appropriate for texture synthesis over 

surfaces. This approach has the potential to produce good results by hiding the seams. 

However, our parameterisation method could easily be extended to a one-to-one mapping 

by creating a bounding box around every chart and organizing them so that none overlap.  

An alternative approach to texture synthesis is to line the seams up so that the mesh 

appears seamless. This is no easy task but recently Kalberer et al [44] proposed an extension 

to the Quad Cover algorithm [49] that parameterizes tube-like surfaces with a globally 

consistent stripe texture. Although this method still introduces seams similar to those in the 

present system, the coordinates are assigned such that the textures are hiding the 

appetency of the seams. The results produced are quite promising. To achieve this, the 

principal curvature frame field of the tube-like structure is used to drive the 

parameterization process. 
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4.4 Subdivision Surfaces 

4.4.1 Introduction 

By this point the control mesh is fully constructed and parameterized. The final step is to 

apply surface subdivision to produce a smooth high resolution mesh. The general theory 

and background behind subdivision surfaces is covered in chapter 2. In this section an 

implementation of the Loop Subdivision scheme is presented. The foremost motivation for 

our use of subdivision is to smooth the surface where branches meet. This is what most 

significantly distinguishes the models produced by Yggdrasil from those produced by 

TreeDraw. In prior work, the models were constructed as a set of intersecting generalized 

cylinders defined along a Bezier curve. Although this Bezier curve produced a smooth blend 

between child and parent, it does not blend child-child intersections. In contrast, through 

the iterative application of loop subdivision to a generated control mesh, all branches are 

blended smoothly. A comparison of the models appears in Figure 4.25. 

 

 

Figure 4.25: a: The structure of the model produced by the previous system. b: the control mesh 

produced by the mesh generation module. c: A high resolution mesh obtained through the 

repeated application of Loop subdivision to the control mesh. 

This subdivision component was designed modularly and has no direct dependencies on 

the mesh generation component, other than requiring the generated control mesh as 

input. There is nothing unusual about the control mesh; any arbitrary OBJ model can be 

loaded subdivided, provided it consists entirely of triangles.  There are two requirements of 

the subdivided mesh: Firstly, the base and branch tips must remain fixed; secondly, since the 

mesh is parameterized the texture coordinates must propagated down to the subdivided 
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mesh. The texture should not be shifted, stretched or otherwise deformed beyond reason by 

the subdivision process.  

4.4.2 Loop Subdivision 

As discussed in the background chapter on subdivision surfaces, Loop is designed 

specifically for meshes consisting entirely of triangles. The mesh data structure is constructed 

to be as convenient as possible. For this purpose, each face contains a list of vertices {A, B, 

C} as well as a list of edges {AB, BC, CA}. Each edge points to two faces. Both vertices and 

edges also point back to the faces the constitute them. There are three steps in the 

algorithm. First, a new edge point is constructed for every edge. The edge point is a 

weighted average of the edge's end points and the two far points that form the triangles 

incident on the edge.  

𝑒𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡 =
3

8
(𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝐴 + 𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝐵) + 

1

8
(𝑓𝑎𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝐴 + 𝑓𝑎𝑐𝑒𝑃𝑜𝑖𝑛𝑡𝐵) 

The set of new vertices are referred to as odd vertices while the original vertices are referred 

to as even. Since the control mesh generated is open at its base and branch tips. It is 

necessary to modify this rule for boundary cases. A boundary is an edge with only one 

incident face. If the rule were simply used as it stands then the boundaries would pull away 

from their initial positions. This would significantly alter the structure of the tree. To account 

for this, boundary edge points at boundaries are simply the average of the end points, the 

opposite face point is not considered. 

𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝐸𝑑𝑔𝑒𝑃𝑜𝑖𝑛𝑡 =
1

2
(𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝐴 + 𝑒𝑛𝑑𝑃𝑜𝑖𝑛𝑡𝐵) 

Next, the positions of the original vertices in the control mesh are updated. The new 

location is based on the old position and the surrounding original vertices. 

𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑎𝑛𝑑 𝑘 𝑖𝑠 𝑡ℎ𝑒 

 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠: 

𝑘 =  

{
 
 

 
  𝑛 = 3:   

3

16

 𝑛 > 3:  
1

𝑛
(
5

8
− (

3

8
+ 
1

4
sin (

2𝜋

𝑛
) )

2

)

  

 

𝑤ℎ𝑒𝑟𝑒 𝛽 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠: 

𝑛𝑒𝑤𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = (1 − 𝑛 × 𝑘) × oldPosition     + k ×∑βi

n

i=0
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Every triangle is subdivided into four new triangles. One triangle is formed in the centre and 

is defined by the three edge points. The other three triangles are each constructed from 

one of the original vertices and two of the new edge points. The fractional values ensure 

that the new point is normalized. Although not implemented in our system, the efficiency of 

the algorithm can be improved by constructing a matrix and performing a linear 

transformation on the surrounding vertices.  

4.4.3 Subdividing texture coordinates 

Subdividing texture coordinates is more challenging than subdividing faces. This is due to 

the presence of seams. A seam occurs when a vertex is be associated with multiple texture 

coordinates, depending on which face is being considered. If this was not the case and 

every vertex was simply associated with one texture coordinate then subdividing the 

coordinates becomes trivial. The subdivision rules are simply applied in 5-space {x, y, z, u, v} 

where u and v are texture coordinates. Since this is not the case and subdivision at seams is 

complex, it was decided that texture coordinates would simply be subdivided linearly. With 

this approach the texture coordinate of a new edge point is set as the midpoint of the 

texture coordinates associated with the edge. In general such a linear approach produces 

poor results with visible discontinuities across the subdivided surface. However, due to the 

inherent structural randomness of bark much of these artefacts are hidden. Figure 19 

contains two examples of surfaces with subdivided coordinates.   

 

Figure 4.26: An illustration of the effect of linearly subdividing the texture coordinates with 

every subdivision step. 
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4.5 Discussion 

In this chapter a procedure for generating a mesh from a graph was presented. Although 

the graph implemented was directed and acyclic, this method can be generalized to a 

graph of arbitrary topology. During this construction of this graph, joints that overlap with 

one another are identified and merged. This is one of the algorithm’s shortcomings as it 

changes the structure of the final tree. Once the graph is complete, mesh generation 

begins by constructing all the branch segments between the joints. Each branch is 

parameterized such that a bark-like texture is tiled along its length. The reason these branch 

segments are created first is that the vertex loops that define their ends are needed as input 

for the joint construction routine.  The joint is created by constructing convex hulls around 

the input vertex loops, and then removing the faces that form within the loops. This was the 

second joint construction algorithm implemented. The first approach, known as the interim 

Core Scheme, took up a great deal of development time, but was abandoned as it could 

not guarantee robustness.  

To complete the control mesh, all that remains is to parameterize the faces that form the 

joint. This is achieved by interpolating the texture coordinates that were assigned to the 

branch faces across the faces in the joint. This produces reasonable results, however seams 

are introduced. The control mesh is now finished, but is a coarse representation of the tree. 

In order to create a smooth and natural surface, Loop Subdivision is applied. On average 

only the iteration of subdivision on are necessary to achieve reasonable smoothness, 

however this is entirely dependent on the distance between the camera and the model. 

 

 

 

Figure 4.27: The steps involved in constructing the model as well as the file outputs 

To be of use, this procedure was interpreted into TreeDraw’s procedural generation 

pipeline. Rather than replacing the generalized cylinder models produced by TreeDraw, the 

user is able to choose which model they would like to generate. The motivation for this is 

that the branches in the generalized cylinder models have the benefit of being converted 

into Bezier curves. By comparison the branches of our models often look unnaturally straight. 

To compensate for this, users can approximate curves as a sequence of short line segments 

when sketching the tree. These will become a smooth curve when subdivided. 

LST File Construct Graph 
Generate Branch 

Segments 
Generate Joints 

Sections 

Parameterize 

Mesh 
Low Res OBJ File Loop Subdivison High Res OBJ File 
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Both models can be exported as an OBJ file. Exporting subdivided models is possible, 

though due to their size, it is advisable to simply export the control mesh. The model size 

approximately quadruples with every iteration of subdivision. The control mesh can be 

loaded and converted into a subdivision surface in most 3D modelling and rendering 

packages, however if they don’t support Loop then the surfaces produced will likely be 

inferior. 

 

Figure 4.28: Three models generated from the same LST file. The model at the top was created 

by TreeDraw’s existing model generator. The bottom left models was created by the mesh 

generator described in this report. This coarse mesh is then converted into the subdivision surface 

seen in the bottom left 
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Chapter 5  

Experimentation and Results  

This chapter details three separate evaluations that were performed, as well as the results 

obtained from them. The purpose of these evaluations was to answer the main research 

question and determine the overall success of the project.  The three evaluations were:  

1 An initial evaluation performed midway through development 

2 A final evaluation directed at answering the primary research question 

3 Performance testing to analyse the scalability of the solution. 

5.1 Initial Evaluation – Expert Users  

The initial evaluation took the form of an expert user test. The goal of this evaluation was to 

receive feedback on the algorithms used and quality of the models produced. In total five 

users took part; two lecturers from the computer sciences department and three computer 

science masters student. All of the users had a wealth of experience and provided unique 

insights into the field of computer graphics. The solution was demonstrated to each user on 

a one-on-one basis over the course of a week. This allowed feedback from earlier users to 

be incorporated before demonstrating to later users. As a result later users identified issues 

that were not perceptible or did not exist earlier.  

It was decided that the best approach to initial development would be to create a 

complete system but with minimal required functionality for individual stages. Once the 

core functionality was in place, further implementation iterations were undertaken. An 

informal evaluation was performed midway through the development cycle in order to 

identify focus areas for remaining development. At this point only the Interim Core Scheme, 

branch parameterization and loop subdivision had been implemented, and the solution 

had not yet been integrated into TreeDraw. Instead, a separate GUI was created. This 

interface allowed users to load an LST file, perform the mesh construction algorithm and 

apply multiple iterations of surface subdivision. Two slider controls were exposed that 
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allowed users to control the progress of the algorithms. The first slider controlled the progress 

of the joint construction algorithm which could be halted at any point by moving the slider 

back and forth. The second slider set the number of iterations of loop subdivision applied to 

the model. An interactive 3D OpenGL viewport was implemented in which the model could 

be rotated and inspected. The most significant issues identified by users fall into three 

distinct categories. These are construction errors in the joint mesh, surface smoothness, and 

mesh parameterization issues.  

5.1.1 Joint Mesh Construction Errors 

Allowing users to load up the various LST files and inspect the constructed joints at their 

leisure exposed a lot edge of cases in the construction algorithm that had previously gone 

unnoticed. These were occurrences where the joints of the mesh were poorly constructed. 

Issues exhibited include intersecting polygons, polygons that pass through the joint centre, 

and holes in the mesh surface. One of the initial steps in the joint construction algorithm 

involves projecting the ends of the branches onto a sphere. Upon investigation, it was 

determined that the edge cases were the result of defining the joint centre as the end of 

the parent branch. In cases where all branches lie on the same side of the centre, the 

triangulation rules fail. To address this, the joint centre is geometrically calculated as the 

midpoint of the all the branch starts. This distributes the projected branches more evenly 

around the sphere, and leads to improved robustness of the ICS algorithm. 

  

Figure 5.1: An example of an edge case where faces intersect.  
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5.1.2 Subdivision Surface Smoothness 

The purpose of a subdivision surface is to model a smoothly curving surface; however, the 

surfaces were exhibiting ripples and undulations near the joints. One user highlighted that 

although these were a theoretical issue, they actually produced a more tree-like surface. 

Nevertheless the source of the undulations was investigated and it was found that they 

were the result of under-tessellating the branch segments between the faces. This is 

because the Loop subdivision scheme first inserts new vertices at approximately the 

midpoint of every edge and then smooths the positions of the original vertices by pulling 

them towards their immediate neighbours. The further a neighbouring vertex is, the stronger 

its pull. Since the branches were under tessellated, the vertices were far apart. This resulted 

in a large pull leading to a significant difference between the new midpoint and the 

smoothed position of the original vertex. These differences lead to a ripple across the 

surface. To resolve this, the branch segments were more finely tessellated based on their 

length and radius. This results in shorter neighbour distances and a much smoother and 

more predictable limit surface. 

 

Figure 5.2: Ripples across the subdivision surface 

 

 

Figure 5.3: Mesh that forms the joint had not yet been 
assigned texture coordinates. 

5.1.3 Mesh Parameterization 

Two issues regarding parameterizations were identified. The first was that the polygons in the 

joint did not yet have texture coordinates assigned to them, and as such were not yet 

textured. The reason for this was that the parameterization of the joint mesh had not yet 

been implemented, and was thus was not a significant case for concern. The second, more 
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problematic, issue raised was that the texture coordinates were not being smoothly 

subdivided with the mesh; instead they were simply being linearly interpolated. This was 

because subdividing texture coordinates is inherently difficult due to the unavoidable 

presence of seams. Seams occur when one vertex maps to multiple texture coordinates. 

Linearly interpolating texture coordinates leads to distortions in the texture mapping. 

Although this is problematic, one user rightly pointed out that this warping is hidden by the 

noise present in bark patterns. As such improving, the subdivision of coordinates was 

assigned a low priority. 

5.2 Final Evaluation – Participant Study 

The intended outcome of the final evaluation was to establish a quantitative measure of 

the realism for models produced by both the previous system and by this project, and 

answer the following research question: 

Can the realism of the branching structure be improved through the application of 

subdivision surfaces? 

5.2.1 Experimental Method 

To experimentally evaluate this question, a participant study was undertaken; specifically a 

single factor within-subjects design (repeated measures).  Participants were asked to 

separately score the realism of the models produced by TreeDraw and those constructed 

using subdivision surfaces (Yggdrasil). T-tests were applied to the score distributions to 

discover how the models compared statistically. The null hypothesis postulated is: 

H0: The score distribution for models generated by Yggdrasil is the same as the score 

distribution for models generated by TreeDraw. 

 

H1: The score distribution for models generated by Yggdrasil is higher than the score 

distribution for models generated by TreeDraw. 

The models themselves were not presented to participants; instead shaded renders of the 

models were displayed. The alternative to presenting images would have been to display 

the models in a 3D interface and allow users to rotate and examine the models at their 

leisure. The reason this route was not taken was that the TreeDraw models approximate the 

skeleton of the tree using Bezier curves, while the models produced by Yggdrasil interpret 

the skeleton directly. The use of Bezier curves arguably creates trees which curve more 

realistically. Since the research question pertains specifically to modelling the joints as 

subdivision surfaces, it was decided that the Bezier curves would confound the realism 

scores. As such renders which focus on the joints were used instead. A consequence of this 
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is that the results obtained do not indicate which method produces a more realistic model 

as a whole. 

In attempt to compare the realism of models produced by Yggdrasil to real trees, a second 

set of silhouetted images were presented to participants. These silhouettes were created for 

the models by rendering them without shading. Creating silhouettes of real trees proved 

more arduous. Photographs of trees needed to be manually segmented and masked. The 

reasoning behind using silhouettes is that many of the confounding variables are removed, 

leaving only the structure of the branch. From this a second null hypothesis was postulated: 

H0: The score distribution for silhouettes of models generated by Yggdrasil is the same 

as the score distribution for silhouettes of real trees. 

 

 H1: The score distribution for silhouettes of models generated Yggdrasil is lower than 

the score distribution for silhouettes of real trees. 

To reject both of these hypotheses a contradicting result must be found that lies within the 5 

percent range of significance (p = 0.05) using a two-tailed paired t-test. The dependent 

variable in the study is the realism score that participants assign to an image. The 

independent variable is the source of the image: either a model produced by TreeDraw, a 

model produced by Yggdrasil, or a photograph of a tree.  

Participants were first presented with the set of shaded renders, then the set of silhouettes. In 

both cases the images were displayed one at a time. For each image, participants were 

asked to assign a score based on how realistic the branch depicted in the image was. The 

scale used for scoring was a continuous analogue scale between 0 and 100, where 0 

represents “not at all realistic” and 100 represents “Highly realistic”.  

The benefit of using a repeated measures design is that each participant is used as their 

own control. This is important as realism is a highly subjective quality. It makes no difference 

whether a participant scores all images between 5 and 15, 20 and 80, or 60 and 100; one 

image is scored higher than another. A repeated measure design also does not require as 

many participants to attain statistical significance compared to a between-groups design. 

The drawback of the repeated measures design is carryover effects. Fatigue, boredom and 

practice effects all serve to reduce the internal validity of the experiment. These issues were 

addressed through partial counterbalancing by randomizing the order of the images in 

each set. However, the algorithm used for randomization did not guarantee that any given 

permutation would only be shown to one user. Furthermore, the order that the sets were 

presented to participants was fixed. The order of the sets was always: bark, shaded renders, 

silhouettes. This leads to potential carryover effects occurring between the shaded renders 

and the silhouettes.  
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Testing Interface 

The research question pertaining to subdivision surfaces was not the only question 

evaluated during this experiment. The realism of the textures produced by the texture 

synthesis module was also gauged. This was accomplished through a similar methodology: 

participants were presented with square samples of synthesized bark textures, as well as 

square samples of real bark taken from photographs, and asked to score both on their 

realism. This led to a total of three image sets presented to participants. 

1) Shaded Renders of: 

o Models produced by TreeDraw 

o Models produced by Yggdrasil 

2) Silhouettes of: 

o Models produced by TreeDraw 

o Models produced by Yggdrasil 

o Segmented images of real tress 

3) Bark textures: 

o Samples obtained from photographs 

o Samples Synthesized from photograph samples 

To display these images and capture the assigned scores, a graphical user interface was 

developed. The interface was designed collaboratively to meet the testing needs of both 

research questions and was implemented by a fellow project member. Due to its robust 

image loading functionality, QT was the chosen framework for developing the interface. 

The data collected was saved anonymously in comma separated format (.CSV) so that it 

could be easily imported into a spread sheet application and analysed. The testing 

interface consisted of three sections: image rating, commenting on images that received 

low ratings and, finally, a demographic information entry form. 

The image sets were presented one after another in a fixed order, and the order of the 

images in the each set was randomized. The algorithm used for randomizing the order is a 

simple one. For every image in the set, pseudo-randomly select another image and swap 

them. The choice to display the images sets in a fixed order was a concession that resulted 

from implementation time constraints; the initial experimental design called for 

randomization of the set order. It is likely that presenting the shaded images first affected 

the scores assigned to the silhouetted images later. When it became apparent that the set 

order would be fixed, it was decided that it would be better to display the shaded images 

first, thus providing context for the silhouettes. Without this context participants were more 

likely to misunderstand what the silhouettes represented. Since the no conclusions are 

drawn by comparing the distributions from the shaded images to those of the silhouetted 

images, the carry over effects are negligible. 
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Figure 5.4: The test interface developed to capture participant data 
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To avoid scaling artefacts, all images were created and presented at a fixed resolution of 

400 by 400 pixels which captured adequate detail. The models were rendered at this 

resolution with 16x anti-aliasing. Once a user had assigned a score to every image, they 

were asked to write a short comment on the two images from each section that received 

the lowest scores. More specifically, users were asked to comment on why they found the 

branches depicted in the images so unrealistic. These comments revealed qualitative 

insights into the score distributions as well as flaws in the experiment methodology. These are 

discussed in section 5.2.3. 

To find out more about our test participants the final section of the interface consisted of a 

short survey requesting some demographic information. This data was not captured with 

the intention of forming correlations, but rather finding out if the test sample was a fair cross 

section of the population. The data captured pertained to gender, age, field of study, 

experience in botany, experience in 3D graphics, and finally video gaming experience. 

Experience in botany and graphics were measured on a five point Likert scale. The intervals 

used were “Not at all”, “Not Much”, “Moderate”, “Very much”, and “High”. However, it was felt 

that gaming experience would be more accurately measured in years. 

Image Preparation 

The preparation of the images presented to participants is an important aspect of the 

methodology. This is due to the fact that all images were prepared by the experimenter. 

This creates the potential for experimenter bias. As mentioned, the images can be classified 

into two sets: Shaded and Silhouetted. There were three sources of silhouettes. These were 

renders of models from TreeDraw, renders of models from Yggdrasil and segmented 

photographs of real trees. The reasoning behind asking users to score the realism of 

silhouettes rather than regular images is that it allows the models to be compared to real 

trees purely on the basis of their branch structure. Other confounding variables, such as 

bark, are removed. The silhouettes were created for the models by ray tracing them without 

shading in Softimage. All silhouettes were black against a white background. Constructing 

silhouettes from real images of trees proved more challenging. Images were sourced from 

photographs of trees taken for the purposes of this experiment. The trees chosen for 

segmentation exhibited smooth curves at the joints similar to those produced by subdivision 

surfaces. Segmenting the images algorithmically would have been the most time efficient 

and unbiased way of extracting the branches. Unfortunately this was not possible due to 

the high level of noise present in the image background. Instead the images were 

segmented by hand in Photoshop. During this process the rough texture of the bark was 

removed to produce smooth silhouettes similar to those from the renders. This loss in texture 

was deemed necessary since the focus of the experiment was on structure. After 

segmentation a threshold was applied to the image to produce a silhouette. The potential 

for experimenter bias in both the photograph selection and segmentation reduces the 

internal validity of the experiment.  
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Besides the silhouettes, shaded renders were also produced for both the previous models 

and the new models. These were also ray traced in Softimage. However, this time using a 

diffuse shader and a single directional light. The models produced by the L-System compiler 

vary considerably in realism. For both Yggdrasil and TreeDraw, the models that appeared 

most realistic to the experimenter were chosen. The angle at which the models were 

framed for rendering varied from model to model; however, the shot was always focused 

on a characteristic feature. Examples of images appear in Appendix E. 

Experimental Procedure 

In order to conduct the experiment ethical clearance was obtained from the Science 

Faculty Ethics in Research Committee. The certificate of clearance appears in appendix C. 

No prior knowledge, experience or skills were required of the participants who took part in 

the study. The interface was kept as simple as possible so that minimal computer literacy 

was necessary. Participants were also encouraged to ask questions if they were unsure of 

the test interface at any point. The experiment population was drawn from the University of 

Cape Town (UCT) student body. Convenience sampling was employed and participants 

were recruited through posters placed around the upper campus of UCT a week before the 

study began. These posters advertised the experiment, but did not provide many details, 

only that it was in relation to procedural tree generation and that participants would be 

paid R30. To appeal to as diverse a range of students, posters were placed on the notice 

boards of the Science, Humanities, Commerce, and Engineering faculties. There were no 

issues filling all of the testing slots. Participants were accepted on a first-come-first-served 

fashion, which avoided selection bias. A pilot study was run with three participants to 

rehearse the testing procedure, check the stability of the test interface and ensure the 

integrity of the data captured. Two issues arose during the pilot. The interface crashed once 

and it was discovered that only the first word of every comment was being saved. These 

issues were quickly identified and corrected. No other issues occurred during subsequent 

tests. The data obtained during pilot tests was excluded from the final statistical analysis. 

The venue selected for testing was the Macintosh Lab, which resides on the third floor of the 

UCT Computer Science building. Participants were guided to the venue through a series of 

signs. There were no reports of participants struggling to locate the venue.  This venue 

provided a quiet, insulated environment that could be easily regulated. Air conditioning 

ensured a regular room temperature. Three identical work stations were set up allowing 

three participants to be tested per time slot. All work stations were employed, running 

version 11.10 of the Ubuntu operating system. Additionally all workstations had identical 

monitors. This ensured a consistent presentation quality for the images. Unfortunately, the 

workstations were not isolated from one another. Participants could easily observe their 

neighbour’s screens should they so desire.  This introduced a minor confounding variable in 

that participant’s scores may be biased by seeing the scores assigned by their neighbours. 
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Although the testing time slots were scheduled for 40 minute the average time taken for the 

test to be completed was 15 minutes. These slots were evenly distributed over the course of 

a week. While it is likely that many participants may not have been first language English 

speakers, the language used was kept simple and questions were encouraged. To maintain 

consistency across all of the test sessions and between test invigilators, a script was drawn 

up and used as a guideline. Each session began with an experimenter briefing the 

participant. During this briefing the term procedural generation was defined and 

participants were told that the images they would be shown would be of either bark or 

models. No indication was made as to the source of the models. Participants were then 

assured that all data was to be captured anonymously and told that it would be included 

in this report. Before beginning the test two forms of informed consent were signed both by 

the researcher and the participant. One was given to the participant and the other was 

kept by the researcher. Upon test completion participants were debriefed and asked if they 

had any further questions. Finally, they were paid, for which their name, student number 

and signature was required as proof of payment. 

5.2.2 Results 

Over the course of a week, a total of 39 participants took part in the evaluation. This 

included three pilot participants whose data was excluded from the final analysis. Of the 36 

participants whose data was included, one participant did not fill out the demographic 

form. The gender ratio of the 35 that did is rather skewed, 9 were male and 26 were female. 

The ages of the participants ranged from 18 to 23. The mean age was 20.5 years, with a 

standard deviation of 1.9 years. As hoped, participants came from a diverse range of 

studies, broken down into faculties there were 14 from Science, 7 from Humanities, 5 from 

commerce, 3 from Law, and 4 from Engineering. Since both shaded and silhouetted images 

were shown to participants, two separate sets of data were acquired.  

Accounting for Anomalies 

To achieve normality in the distributions, anomalous results were removed from both the 

shaded results and the silhouetted results. Two anomalous scoring patterns were identified. 

In the first pattern, participants assigned a score of 50 to over a third of all shaded renders. 

A potential explanation for this pattern can be found in the test interface design. To allow 

participants to easily assign the scores, a slider control was implemented. Whenever the 

participant were presented with new image, the slider was set to a default position of 50. 

The reasoning behind this was that it would avoid biasing the results in either direction. The 

slider in question can be seen in Figure 5.4. An alternative explanation for the occurrence of 

this pattern is that the participants misunderstood the experiment or the scoring scale. A 

possible third explanation is a malfunction in the testing interface. To account for this 

anomaly two sets of results were excluded from the shaded image analysis, and one 

participants results were excluded from the silhouetted image analysis. 
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The second anomaly that occurred was participants who assigned a score of 0 to multiple 

images. One participant went so far as to assign a total of 8 out of 20 shaded images a 

score of 0. This is unusual because 0 was defined as “not at all realistic”. Theoretically none of 

the branches presented should receive a score of zero as they all have some tree-like 

qualities. This imposes a lower bound on the data captured that lead to a skewed 

distribution. These anomalous scoring patterns indicate that these participants did not fully 

understand the scale, and that experimenters should have been more explicit in their 

explanation. To account for this three participants, who assigned a score of zero to more 

than three images, were excluded from the shaded image analysis, and one from the 

silhouetted image analysis. 

The data of one more participant was rejected from the shaded image results based on 

their comments. This participant assigned a score of 0 to the first two images presented, and 

then commented that the appearance of the bark was too plastic. Since all of the models 

were rendered without texture, the participant clearly misunderstood the aspects that they 

were supposed to be considering.  

In total of the data six participants was excluded from the shaded image analysis and two 

from the silhouetted image analysis. This left 30 data sets for the shaded images and 34 

data sets for the silhouetted images. All distributions were tested for normality by 

constructing normal quartile plots and performing Shapiro-Wilks [50] normality tests. The 

distributions were all found to be normal at a significance level of p = 0.01. 

Analysis of Results 

In the experimental method, two null hypotheses were postulated. 

1) H0: The score distribution for models generated by Yggdrasil is the same as the score 

distribution for models generated by TreeDraw. 

 

2) H0: The score distribution for silhouettes of models generated by Yggdrasil is the same 

as the score distribution for silhouettes of real trees. 

An ideal result would be to reject the first null hypothesis and accept the second null 

hypothesis. On rejecting the first hypothesis we hope to find that the distribution for 

Yggdrasil’s models is significantly higher than the distribution for TreeDraw models. This would 

imply that subdivision surfaces are a more realistic method of modelling branching than 

generalized cylinders. 

To reject the first hypothesis the score distribution of TreeDraw and Yggdrasil are compared 

for both the shaded and silhouetted images. On performing a two tailed paired t-tests for 

the shaded and silhouetted results we find that in both cases we can reject this hypothesis 

at the p = 0.02 significance level.  The exact p-values of the t-tests are available in Table 5.1. 

By examining the mean it is possibly to infer that on average, participants found the models 
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produced by Yggdrasil more realistic than the models produced by TreeDraw. These means 

can also be found in Table 5.1. 

Table 5.1: Top: Means and medians of the distributions. Bottom: Results of the t-tests performed 

on the various distributions  

Means and Medians of the Score Distributions 

 Shaded Silhouettes 

Distribution Mean Median Mean Median 

TreeDraw 49.0 49.65 45.21 46.81 

Yggdrasil 55.6 55.8 48.34 48.25 

Real N/A 62.41 64.44 

 

Two Tailed Pair T-Test Results 

 Shaded Silhouettes 

Distribution One Yggdrasil Yggdrasil Yggdrasil TreeDraw 

Distribution Two TreeDraw TreeDraw Photographs Photographs 

p-value 0.000158 0.017226 7.15294E-09 3.32342E-10 

 

For the second hypothesis only the silhouetted results are analysed as the shaded renders 

did not include any real trees. On performing a two tailed paired t-test on score distribution 

of Yggdrasil, and the score distribution of segmented photographs, it was found that the null 

hypothesis must be rejected at a 0.01 level of significance. The means for the distributions 

indicate that the silhouettes of model produced by Yggdrasil are not as realistic as 

silhouettes of real trees.   

The results show that participants found the silhouettes and renders of models produced by 

Yggdrasil more realistic than those of TreeDraw, however, less realistic than photographs of 

real trees. This was the anticipated result and is confirmed by the box and whisker plots 

below. 
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Figure 5.5: Box and Whisker plots for the three distributions obtained from the presenting 

silhouetted images to participants. 

 

 

Figure 5.6: Box and Whisker plots for the three distributions obtained from the presenting shaded 

images to participants. 

Qualitative Analysis 

Besides the quantitative scores captured for each image, participants were also asked to 

write a short comment for the two images in each section that received the lowest rating. 

This revealed key insights into the basis on which participants were assigning scores. Many of 

the issue raised were to do with the construction of the model. Some commented that the 
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models were too perfect or that the branches were too straight. In regard to the joints many 

participants took issue with the abrupt blend in the models produced by TreeDraw, 

commenting that it looked as though the branches had been drilled into one another. 

Issues were also raised for models from Yggdrasil, a few comments referring to the joints as 

being too smooth or flat. In general, participants were bothered that the trunk was the 

same width as the branches. This was an error on the part of the experimenter; more time 

should have been allocated to constructing more realistic models with the TreeDraw sketch 

interface. 

5.3 Performance Evaluation 

To evaluate the scalability of the joint construction algorithms and Loop Subdivision, 

performance testing was conducted. The tests were executed on a Lenovo Y570 laptop 

running version 12.04 of the Ubuntu operating. The laptop consisted of an Intel Core i7 CPU 

2.20 GHz with 8 logical cores and 8 gigabytes of DDR3 ram. The time taken for a function to 

complete was measured as the differences between the clock time at the start of the 

function and the clock time at the end of the function. The clock time was measured at 

millisecond granularity using the gettimeofday() function provided by “system/time.h” 

library.  

The performance of the mesh generation process is directly related the complexity of the 

submitted graph. Two main factors influence the graph complexity. These are the number 

of branches and the degree of branching at the joints. Since the branch segments 

between joints are constructed independently of one another, an increase in the number 

of branches leads to a linear decrease in performance. A more interesting performance 

relationship exists based on the degree of branching. To understand this relationship better 

the execution time of the joint construction function was sampled for various branching 

degrees.   

Although the Interim Core Scheme method was abandoned in favour of a convex hull 

method, its performance was nevertheless measured for comparison. The independent 

variable is time in milliseconds and the dependent variable is the number of branches for 

which a joint must be constructed. This number ranged between 2 and 200. To account for 

random fluctuations caused by the operating system the function was executed for the 

entire input range 50 consecutive times. At the end of the test every value of N had 50 

associated time measurements, which were then averaged. The plotted measurements 

can be seen below in Figure 5.7. Both methods display a polynomial growth of order N2, 

however, it is clear from the data that the convex hull method exhibits superior scaling. 
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Figure 5.7: The performance of the joint construction algorithms in relation to the degree of 

branching  

As a point of interest the performance of the loop subdivision implementation was also 

measured. Once again the dependent variable is time in milliseconds; however, the 

independent variable is now the number faces in the control mesh. The relationship, 

illustrated in figure 3, was found to be linear. This is to be expected as the algorithm 

subdivides the mesh on a per face basis. 

 

Figure 5.8: The performance of the Loop subdivision implementation in relation to the number of 

faces 
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The processes of mesh generation and subdivision both lend themselves particularly well to 

parallelization. In the case of mesh generation, all of the branch sections can be 

constructed in parallel, after which the joints can all be created in parallel. Since Subdivision 

is a local operation subdividing one face at a time it can also be trivially parallelized. 

Besides parallelization, other optimizations exist. For a start a more efficient convex hull 

algorithm could be implemented, such as Quickhull, which has a best case complexity of 

O(n*log(n)). To reduce the procedures memory a more weakly connected mesh data 

structure could be implemented. This comes with a performance penalty as more pointer 

traversals are needed to access the components. It also significantly increases 

implementation complexity. 

5.4 System Limitations 

Although the procedure presented in this report provides a robust solution to the problem of 

generating a mesh from a graph, it does have several shortcomings. Some of the issues, 

such as parameterization and Bezier curves can be resolved with more implementation 

time, while other issues such as graph simplification are inherent in the approach to joint 

construction.   

   

Figure 5.9: Left: an example of seams introduces at the joint. Middle: Parameterized control 

mesh. Right: Distortion caused by subdivision near seams  

5.4.1 Parameterization 

Parameterization in general is a difficult problem. Many modelling packages require the 

user to manually assign texture coordinates. Spheres in particular prove troublesome as 

there is no way to parameterize them without introducing stretching. The parameterizations 

produced by this system are reasonable and take into account striation direction, however, 

the seams introduced at the joints cause discontinuities that do not stand up to close 

inspection. A potential solution to creating a parameterization that appears seamless is 

Stripe Parameterization [44]. A more common approach, however, is to perform texture 
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synthesis across the surface of the mesh. The only prerequisite of this method is that the 

mesh has a one-to-one parameterization that minimizes stretching. There are many 

techniques to produce such a mapping over the generated meshes [51].  

5.4.2 Subdivision of Texture Coordinates 

As the mesh is subdivided, new vertices are created and old vertices are moved. To 

prevent the texture from stretching, shifting or distorting it is necessary to also move the 

texture coordinates associated with these vertices. The easiest way of doing this is to treat 

the vertices as existing in 5 dimensions, (x, y, z, u, v), where x, y and z refer to the vertices 

position in Euclidean space and u and v refer to the as associated texture coordinate in 

texture space. In this case, the subdivision rules can simply occur in 5-space. Unfortunately, 

due the presence of seams, not every vertex is associated with exactly one texture 

coordinate. As a result of this, when a new edge vertex is created its textured coordinate is 

linearly interpolated between the texture coordinates at either end of the edge. This leads 

to distortion occurring near the joints, as seen in Figure 5.9. 

  

Figure 5.10: (Left) Model produced by TreeDraw. (Right) The same model produced by Yggdrasil 

displaying structural change due to the graph simplification step. 

5.4.3 Graph Simplification 

As described in the design chapter, a requirement of the joint construction algorithm is that 

no joints intersect. Unfortunately no such constraint is placed on the graphs produced by 

the L-system; because of this, an intermediate simplification step is needed to remove these 

intersections. These simplifications introduce structural changes in the graphs. Often the 

changes are negligible; however, there is the potential for degenerate cases. An example 

of a significant structural change is illustrated in the Figure 5.10 below. In this case an 

alternating branching pattern is simplified into an opposite branching pattern. This is an 
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inherent weakness of the joint-centric approach. A potential solution to generating a mesh 

for an arbitrary graph is constructive solid geometry (CSG), where two intersecting meshes 

can be joined with a union operation. However, no literature was encountered that could 

confirm this.  

5.4.4 Bezier Curves 

This research project is focused on whether subdivision surfaces can be used to more 

realistically model the branching points of a tree. The findings of the participant study 

indicate that the realism, in fact, improved. However, due to the nature of the experiment 

this does not imply that the overall model is more realistic. In the previous system, the graph 

produced is not directly interpreted; instead it was converted to a set of Bezier curves. These 

curves gave the braches a natural look. Due to time constraints, Bezier curves were not 

implemented in this project. This arguably causes a significant loss in realism.  

  

Figure 5.11: (Left): A tree produced by the previous system modelled with Bezier curves. (Right)A 

tree produced by this project without Bezier curves. 
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5.5 Example Models and Degenerate Cases  

 

Generilzed Cyilnder Models (TreeDraw)  Subdivision Surfaces (Yggdrasil) 
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Generilzed Cyilnder Models (TreeDraw)  Subdivision Surfaces (Yggdrasil) 
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Generilzed Cyilnder Models (TreeDraw)  Subdivision Surfaces (Yggdrasil) 
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Generilzed Cyilnder Models (TreeDraw)  Subdivision Surfaces (Yggdrasil) 
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Figure 5.12: The figures above illustrate how subdivision surfaces smooth out irregularities that occur in the control 
mesh 
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Figure 5.13: The images above depict a textured subdivision surface model. The model in the top 

image indicates that it is possible to generate curving branches despite the fact that Bezier 

Curves were not implemented. To achieve this, the curves must be manually drawn in the sketch 

interface. 
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Chapter 6  

Conclusion 

Procedural content is crucial to the development of computer generated productions such 

as films and video games. The procedurally generation of trees is particularly useful for 

creation of large outdoor render environments. A common approach to modelling a tree is 

to construct each branch individually, and then overlap them to create the illusion of 

connectivity; however, this fails to capture the smooth natural blends at points of furcation. 

It was postulated that this issue could be resolved by modelling the tree as a subdivision 

surface. To verify this theory, a procedure was developed which generates a single 

manifold mesh from an L-System graph. This mesh is then converted into a subdivision 

surface though Loop subdivision. This procedure was then integrated into an existing 

procedural tree generator, which originally modelled each limb of the tree individually as a 

generalized cylinder. To find out whether the subdivision surface models were more realistic 

than those constructed from generalized cylinders, an experimental study was conducted. 

In this study participants were asked to rate the realism of the two model types. The results 

of the experiment indicate that the participants found the subdivision surfaces more 

realistic, confirming the hypothesis. 

From our experience it is clear that subdivision surfaces are a powerful tool for the modelling 

of trees. However, the surfaces produced are only as good as their underlying control mesh. 

Although subdivision surfaces produce more realistic models, the models generated 

procedurally by the system are often far from realistic. This in part due to the L-System 

compiler, which occasionally produces an awkward skeleton, however, it is also a 

consequence of shortcomings in the mesh generation algorithm. A great deal of trial and 

error was required in designing this algorithm. Constructing the mesh at the branching 

points proved particularly difficult.  In the end, this was solved by constructing a convex hull 

around the ends of the connected branches. Although this method produces pleasing 

results for low branching degrees, for high branching degrees (greater than six) the results 

are often quite unnatural. This is depicted in graphic detail by the degenerate cases 

presented in the previous section. Another caveat to the method is that the graph has to 
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be simplified before the mesh can be generated. This is an inherent requirement of the 

mesh generation algorithm and to overcome it a different avenue of mesh generation must 

be pursued. Despite these shortcomings, the models produced are reasonable. 

Furthermore, the development of this procedure has ruled out many approaches that do 

not work and marks another step towards the procedural generation of more realistic trees. 

6.1 Future Work 

6.1.1 Avoiding simplification 

The method of mesh construction presented requires that no joints overlap. To ensure this 

condition a graph simplification step is implemented which merges overlapping joints. This 

approach leads to undesirable structural changes. A better approach to mesh generation 

would be to add very branch to the model one at a time in an arbitrary order, and avoid 

structural changes entirely. A field of research that could potentially handle such an 

approach is constructive solid geometry (CSG). CSG allows operations from set theory to be 

applied to arbitrary meshes. The branches could then be connected through a series of 

union operations. A drawback CSG, is its tendency to create poor topology at the points 

where the union occurred. A solution to this is to perform re-meshing after all of branches 

have been joined. However, no literature was encountered that could confirm this as viable 

approach. 

6.1.2 Displacement maps 

Displacement maps add extra detail to a model by offsetting the positions of the actual 

geometry by a distance stored in a height map. This is in contrast to bump and normal 

maps which simply create the illusion of detail perturbing the surface normals during the 

lighting calculations. For displacement maps to be truly effective, a highly tessellated mesh 

is required. As such subdivision surfaces and displacement maps often go hand in hand. 

With every subdivision of the mesh, the vertices are updated to better approximate the 

detail in the displacement map. The finer the subdivision, the better the approximation. A 

displacement map could be used to great effect in capturing the rough texture and cracks 

in bark, and unlike with bump and normal maps, this detail will be present in the silhouettes 

of the model. 

6.1.3 Bezier Curves 

The input to the mesh generation procedure is a graph representing a tree. The original 

model generator first converts this graph into a set of Bezier curves. This results in more 

natural looking limbs. Due to development time constraints, Bezier curves were not included 
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in our procedure, instead the graph is interpreted directly. This leads to unnaturally straight 

branches. Although the branches of these models blend naturally, from a distance, the 

models look arguably less realistic as a whole. By Incorporating Bezier curved our models 

would surpass the previous models in realism. Since the subdivision surfaces already 

approximate B-splines all that is required is to convert the branches in the graph into coarse 

approximations of a curve before submitting t to the mesh generator. 
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Appendix 

A An overview of the TreeDraw system 

The mesh generating procedure described in this report integrates into an existing 

procedural tree generator called TreeDraw. TreeDraw is the end result of a previous 

research project conducted Danoher [3], Black [2]and Goldberg [4]. The system is designed 

with a sketch based interface that allows users to draw the skeleton of a tree from which an 

L-system is created. This L-system then generates the structure of a 3D tree which is 

modelled as a set of generalized cylinders. An important aspect of TreeDraw is its ability to 

encode variation specified in the sketch into the L-System. This allows multiple similar though 

distinct trees to be generated from a single sketch. The system was developed as several 

discrete components. These are outlined below. 

Sketch Interface and Gesture Recognition 

The sketch interface forms the front end of the system. Users sketch the general structure of 

a tree by drawing one branch at a time using the mouse. Each branch has several 

parameters including start radius, end radius and angle to the parent. Additionally, the user 

can specify a degree of variation for each of these parameters. Besides the trunk, all 

branches drawn must be parented to a previous branch. Branches drawn further away will 

snap to the closest branch. When the user is satisfied with their sketch, they submit it for 

generation. The trees sketched by the user are interpreted as axial trees [1, 2]. The 

parameters are extracted from the sketch and saved as an XML file. This XML file is 

submitted to the next component in the model generation pipeline, the 2D to 3D converter.  

2D to 3D converter 

Once the user has submitted the sketch, the first step is to transform it into a three 

dimensional representation. This is achieved by shifting the branches along the length of 

their parent and then rotating them about their parent. This spreads the child branches 

uniformly. The goal of this is to maximize the distance between branches. This models the 

botanical principle that states that trees grow in such a way that the distance between 
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branches is maximized [52]. The transformed sketch is once again saved as an XML file and 

submitted to the L-system generator. 

L-System Generator and Compiler 

The L-System generator parses the XML input from the 2D to 3D converter, normalizes it, and 

constructs a parameterized L-System [1]. This normalization is necessary to accommodate 

the idiosyncrasies in the way a user may draw a tree [4]. The production rules of the L-system 

are a predetermined set which are applied based on branching patterns in the input. The L-

System generated is saved as an LPFG file which is in turn parsed by the L-System Compiler. 

The compiler interprets the L- system and constructs a C++ file. When the C++ file is 

compiled and executed a unique string representing a tree is produced. From this single L-

system multiple tree models can be derived. Although the models produced appear similar 

to the users sketch, each one exhibits variation. 

Tree Model Generator 

The final stage in the original pipeline is creating the polygon model that will be displayed to 

the user. The model generator executes the compiled L-system to generate a string 

representing a tree. Every time the L-system is executed a new variation is produced. From 

this string a model representing the tree is constructed. The tree is modelled as a set, of 

intersecting generalized cylinders that follow Bezier curves. These cylinders are tessellated to 

capture smooth curves. The cylinders are parameterized so that a bark texture can be 

mapped to the surfaces. Finally, the model is submitted to an Opengl rendering 

environment which displays the final 3D model. 
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B Edge collapse algorithm 

The heuristic for collapsing edges is simple: Always choose the shortest edge. To assist in this 

process the edges are stored in a priority queue based on their length. The algorithm is 

complete when the queue is empty. An edge cannot be collapsed if its vertices share the 

same initial boundary loop. This ensures that the joint maintains it overall structure since 

none of the edges that form the base of a branch are lost. 

Every iteration begins by popping the first edge off the queue and examining it. Each vertex 

contains a list of boundary loops that it is part of. If neither of the edge's vertices share any 

boundary loops, then the edge is collapsed by merging the vertices. Collapsing an edge 

also implicitly collapses the faces adjacent to it, so they also need to be removed. All of the 

edges and faces that indexed the old vertices are updated to point at the new merged 

vertex. For every triangle that is collapsed there are now two edges that index the same 

vertices but different adjacent faces. These must be merged into one edge that points to 

both adjacent faces. The priority queue must be updated since the edge lengths have 

changed.  

Vertices are merged by calculating a weighted average of their positions and appending 

their loop lists. The weight of a vertex is the number of merged vertices that it represents. All 

vertices start with a weight of 1. When two vertices with weights of 1 are merged the new 

vertex, A, will have a weight of 2.  When that A is merged with vertex C of weight 1, the new 

vertex will have a weight of 3 and its position will be 2/3 A's position and 1/3 third C's 

position. This means you can merge three vertices in any order and always arrive at the 

same position. The collapse of three edges is illustrated in Figure B.1. 

 

Figure B.1: Collapsing 3 edges. First edge CB is collapsed, forming the merged vertex D with the 

combined weight of C and B. Next, Edge AD is collapsed forming merged vertex E whose 

weight is the combination of A B and C. 



93 

 

C Ethical Clearance 

 



94 

 

  



95 

 

D Experiment Data 

Table D.1: Motivations for data exclusion 

Anomalous Data Excluded from Analysis 

 Participant assigned a score of 50 to more than a third of the images 

 Participant assigned a score of 0 to more than a third of the images 

 Comments indicate that the participant misunderstood the experiment 

 

Table D.2 Scores Assigned by Participants to the Shaded Renders 

Yggdrasil 

Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 

/a_ygg.png 70 40 88 19 26 59 50 40 31 50 32 29 33 17 0 50 50 23 

/d_ygg.png 60 45 16 24 41 50 60 30 67 60 30 6 58 26 40 45 45 61 

/e_ygg.png 70 50 70 69 68 34 74 50 56 65 60 34 43 30 30 53 50 58 

/f_ygg.png 70 60 88 52 54 50 85 67 50 66 50 41 36 27 80 55 80 46 

/h_ygg.png 70 50 80 46 60 30 64 50 40 44 14 29 35 18 30 56 45 30 

/k_ygg.png 70 50 0 6 29 31 50 25 50 51 50 3 34 28 45 50 75 16 

/n_ygg.PNG 60 60 62 25 31 50 56 50 30 41 60 9 39 25 50 45 45 23 

Mean 67.5 50.6 59.1 35.9 43.6 44.3 61.1 44.3 46.8 54.0 39.0 19.5 39.6 23.9 36.9 51.3 56.3 35.9 

Participants P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

/a_ygg.png 47 50 60 60 30 50 45 56 54 60 50 46 0 60 70 47 52 34 

/d_ygg.png 55 37 55 30 53 70 56 63 87 40 50 64 0 40 60 56 64 37 

/e_ygg.png 53 50 45 50 52 75 42 67 70 60 50 62 0 65 50 57 79 72 

/f_ygg.png 52 55 50 65 42 63 58 62 62 60 60 65 25 70 50 47 39 44 

/h_ygg.png 48 49 45 40 50 50 37 72 87 30 70 50 8 55 60 45 47 41 

/k_ygg.png 59 50 45 35 55 54 65 38 76 70 70 64 9 50 40 27 33 39 

/n_ygg.PNG 34 48 40 45 47 50 37 45 48 70 40 47 0 70 60 20 28 39 

Mean 49.5 48.1 48.0 44.4 48.0 58.9 48.4 58.5 66.8 56.3 57.5 54.9 7.0 58.1 53.8 43.1 49.6 41.6 

TreeDraw 
Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 

/a_td.png 60 70 68 17 51 44 60 36 20 55 37 38 33 25 50 50 61 25 

/b_td.png 60 40 74 23 40 39 60 50 31 70 30 19 38 34 45 50 80 7 

/c_td.png 70 50 81 32 58 14 61 35 30 67 15 21 36 3 40 50 55 31 

/e_td.png 80 50 73 23 40 37 50 85 32 70 50 27 36 71 30 50 95 63 

/k_td.png 60 40 5 19 11 20 50 55 30 70 10 18 21 42 50 45 45 24 

/l_td.png 40 65 5 3 0 22 50 22 20 40 20 4 34 31 20 55 12 20 

/r_td.png 40 50 6 15 43 19 80 40 30 55 30 6 35 14 35 45 70 25 

/td_a.jpg 40 55 16 2 44 41 60 34 20 40 53 5 34 25 30 47 60 23 

/td_b.jpg 50 50 70 2 7 50 49 15 55 80 10 13 37 30 70 50 60 0 

/td_c.jpg 70 65 100 65 47 40 31 85 30 69 20 16 37 60 37 56 45 27 

/td_d.png 70 40 98 24 34 7 70 30 40 85 10 13 74 27 70 55 60 40 

Mean 58.2 52.3 54.2 20.5 34.1 30.3 56.5 44.3 30.7 63.7 25.9 16.4 37.7 32.9 43.4 50.3 58.5 25.9 

Participants P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

/a_td.png 37 50 45 55 40 59 42 74 88 40 60 69 6 60 50 31 40 45 

/b_td.png 48 48 45 45 58 60 36 72 77 70 50 56 0 40 50 39 55 37 

/c_td.png 58 50 55 45 50 68 70 88 95 30 70 48 12 40 40 43 66 35 

/e_td.png 38 60 72 47 45 55 42 61 94 40 70 61 0 40 50 44 44 29 

/k_td.png 47 49 45 40 47 48 40 39 60 30 40 50 15 60 30 31 41 30 

/l_td.png 39 39 40 20 52 69 43 55 56 30 50 44 3 40 40 18 21 29 

/r_td.png 56 50 45 60 50 50 65 43 81 30 40 44 4 42 50 29 31 40 

/td_a.jpg 21 49 53 45 50 47 51 59 52 60 50 47 0 30 40 33 47 16 

/td_b.jpg 55 48 45 35 61 73 39 43 65 70 70 46 0 40 60 45 22 24 

/td_c.jpg 56 50 47 50 50 58 54 45 100 40 50 67 2 75 50 45 67 38 

/td_d.png 63 44 45 70 55 80 73 34 100 60 80 73 0 30 60 33 62 43 

Mean 47.1 48.8 48.8 46.5 50.7 60.6 50.5 55.7 78.9 45.5 57.3 55.0 3.8 45.2 47.3 35.5 45.1 33.3 

Real Trees 
Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 

/IMG_1295.JPG 60 40 92 58 84 29 80 60 61 40 60 22 50 53 20 50 90 64 
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/IMG_1298.JPG 70 65 100 83 86 28 78 65 80 54 40 31 44 40 50 50 91 22 

/IMG_1299.JPG 60 60 78 52 66 12 71 73 50 80 60 37 63 50 50 50 60 73 

/IMG_1305.JPG 70 60 62 48 64 50 73 60 50 60 50 17 70 70 10 40 98 80 

/IMG_1329.JPG 70 70 92 86 62 56 88 76 80 83 50 37 64 61 80 55 65 76 

/IMG_1333.JPG 60 63 71 66 53 42 66 93 80 75 50 7 70 25 35 50 81 64 

/IMG_1343.JPG 40 70 29 58 59 50 92 50 60 70 33 17 80 65 60 50 95 80 

/IMG_1346.JPG 60 70 100 78 61 0 61 100 50 80 83 23 81 70 70 50 78 66 

/IMG_1351.JPG 80 60 100 62 54 32 88 78 80 84 60 33 67 35 70 59 91 74 

Mean 63.3 62.0 80.4 65.7 65.4 33.2 77.4 72.8 65.7 69.6 54.0 24.9 65.4 52.1 49.4 50.4 83.2 66.6 

Participants P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

/IMG_1295.JPG 61 70 70 75 56 49 46 73 83 40 70 68 0 60 60 55 52 23 

/IMG_1298.JPG 66 63 47 55 50 57 72 75 64 60 90 70 4 75 40 43 55 26 

/IMG_1299.JPG 65 58 47 65 50 65 65 64 94 80 50 59 2 70 50 61 70 36 

/IMG_1305.JPG 52 67 84 70 50 70 52 67 96 60 80 50 0 50 40 53 66 15 

/IMG_1329.JPG 71 68 53 50 48 80 73 75 100 80 90 75 3 75 40 59 74 36 

/IMG_1333.JPG 52 57 47 60 60 59 65 80 90 30 80 73 10 60 40 57 74 51 

/IMG_1343.JPG 58 68 90 40 53 72 73 77 96 70 70 66 0 60 40 65 52 17 

/IMG_1346.JPG 64 44 50 40 60 75 70 71 100 70 100 86 5 75 60 75 74 67 

/IMG_1351.JPG 61 68 50 75 62 60 62 80 86 50 90 77 3 80 40 60 65 51 

Mean 61.1 62.6 59.8 58.9 54.3 65.2 64.2 73.6 89.9 60.0 80.0 69.3 3.0 67.2 45.6 58.7 64.7 35.8 

 

Table D.3 Scores Assigned by Participants to the Shaded Renders 

Yggdrasil 

Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 

/a_ygg_shaded.png 80 50 18 40 54 31 82 76 20 30 50 38 60 64 40 50 90 24 

/b_ygg_shaded.png 60 60 3 50 76 20 55 55 50 70 3 31 72 33 30 58 65 36 

/d_ygg_shaded.png 60 60 85 33 70 27 80 40 40 75 23 15 61 17 50 59 90 60 

/e_ygg_shaded.png 70 60 97 69 47 4 69 73 50 55 21 47 80 29 30 50 70 38 

/f_ygg_shaded.png 90 70 95 78 42 24 76 76 70 80 11 44 80 32 50 46 60 28 

/h_ygg_shaded.png 80 50 82 52 44 0 70 80 60 53 17 52 70 72 0 50 55 36 

/k_ygg_shaded.png 40 40 21 11 22 18 50 40 30 21 0 15 53 31 0 55 50 14 

/n_ygg_shaded.png 80 60 1 54 48 14 60 87 50 44 24 39 70 32 20 55 60 41 

/p_ygg_shaded.png 40 40 82 2 35 27 50 30 50 0 0 8 65 14 0 59 60 17 

/q_ygg_shaded.png 90 60 70 75 66 30 60 85 70 70 56 54 82 100 70 63 55 82 

Mean: 69 55 55 46 50 20 65 64 49 50 21 34 69 42 29 55 66 38 

Participants P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

/a_ygg_shaded.png 48 48 40 75 49 46 47 67 48 50 70 50 0 70 50 49 25 0 

/b_ygg_shaded.png 55 46 50 35 50 50 60 61 59 70 65 50 29 55 50 48 63 10 

/d_ygg_shaded.png 56 48 58 50 53 71 67 70 47 40 50 55 41 70 60 40 66 0 

/e_ygg_shaded.png 47 47 55 55 79 58 60 64 59 70 80 49 50 70 70 57 58 12 

/f_ygg_shaded.png 55 48 50 55 45 63 58 84 58 80 70 74 50 71 80 74 66 50 

/h_ygg_shaded.png 56 47 50 70 66 60 60 66 60 50 60 64 50 65 80 55 55 26 

/k_ygg_shaded.png 33 36 44 40 48 50 60 47 39 40 60 48 13 55 50 19 32 13 

/n_ygg_shaded.png 44 45 50 55 74 52 57 62 66 70 60 75 50 70 70 59 63 50 

/p_ygg_shaded.png 44 48 50 30 81 50 50 61 26 40 40 46 50 40 60 26 32 21 

/q_ygg_shaded.png 73 53 55 80 75 75 66 72 100 80 80 63 50 80 70 60 82 20 

Mean: 51 47 50 55 62 58 59 65 56 59 64 57 38 65 64 49 54 20 

TreeDraw 

Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 

/a_td_shaded.png 70 50 86 53 45 12 66 50 60 62 26 27 80 15 20 45 33 58 

/b_td_shaded.png 40 50 100 39 44 10 54 94 50 31 12 8 70 40 40 50 58 24 

/c_td_shaded.png 60 40 72 43 64 1 50 50 50 45 0 28 50 15 80 50 40 29 

/e_td_shaded.png 80 60 66 61 55 0 59 77 60 20 50 48 60 72 10 45 60 55 

/j_td_shaded.png 80 40 83 20 71 0 50 60 0 51 0 8 42 25 60 50 45 21 

/k_td_shaded.png 70 60 53 44 45 0 50 68 50 69 7 42 53 20 10 60 45 38 

/l_td_shaded.png 50 40 76 7 21 0 50 35 40 0 0 11 52 5 0 40 40 19 

/q_td_shaded.png 70 30 15 42 52 0 23 9 0 60 0 2 55 18 0 60 20 22 

/r__td_shaded.png 50 30 2 38 43 0 57 37 10 75 5 17 41 15 0 50 30 28 
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/td_d_shaded.png 70 50 93 35 42 0 40 87 0 30 0 17 46 50 60 50 40 29 

Mean: 64 45 65 38 48 2.3 50 57 32 44 10 21 55 28 28 50 41 32 

Participants P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

/a_td_shaded.png 74 50 54 45 66 52 56 66 74 60 60 63 50 50 70 48 63 40 

/b_td_shaded.png 52 46 50 45 71 52 54 63 25 60 60 55 50 68 80 48 29 40 

/c_td_shaded.png 92 48 55 55 87 69 55 70 34 60 60 69 50 55 70 16 69 4 

/e_td_shaded.png 57 49 45 70 64 47 60 66 63 60 60 70 50 80 80 52 54 33 

/j_td_shaded.png 33 48 39 20 50 50 71 47 36 60 50 46 50 55 60 12 68 2 

/k_td_shaded.png 58 50 45 40 65 50 55 62 69 70 60 60 50 65 80 48 62 23 

/l_td_shaded.png 48 36 45 40 62 60 46 44 47 60 30 50 35 20 40 8 9 6 

/q_td_shaded.png 52 45 65 40 86 52 68 52 32 40 60 46 50 30 80 7 43 20 

/r__td_shaded.png 66 62 47 35 79 60 55 57 26 40 50 50 50 44 80 40 65 40 

/td_d_shaded.png 42 52 40 25 65 60 68 64 40 50 50 46 34 55 70 21 32 5 

Mean: 57 49 49 42 70 55 59 59 45 56 54 56 47 52 71 30 49 21 
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E Test Image Examples 

 

 

 

Figure E.1: Some of the images presented to participants during the experimental study 

 


	Chapter 1  Introduction
	1.1 System Overview
	1.1.1 Mesh generator
	1.1.2 Surface Subdivision
	1.1.3 Texture Synthesiser
	1.1.4 Leaf generator

	1.2 Research Questions
	1.3  Legal Acknowledgments
	1.4 Thesis Outline

	Chapter 2  Background of Subdivision Surfaces
	2.1 Some Terminology
	2.2 A word on NURBS
	2.3 Significant subdivision schemes
	2.3.1 Catmull-Clarke
	2.3.2 Doo-Sabin
	2.3.3 Loop
	2.3.4 Butterfly
	2.3.5 Extended Catmull-Clarke
	2.3.6  Quasi-Interpolation

	2.4 Discussion

	Chapter 3  Related Work - Modelling Branching Structures
	3.1 Parametric and Implicit Surfaces
	3.2 Generating meshes for branching structures

	Chapter 4  Design and Implementation
	4.1 Graph Construction
	4.1.1 Introduction
	4.1.2 The Graph
	4.1.3 Branch Trimming
	4.1.4 Graph Simplification
	4.1.5 LST file format
	4.1.6 LST Parser and Graph construction

	4.2 Mesh Generation
	4.2.1 Introduction
	4.2.2 Generating the branch segments
	Calculating the Number of Segments
	Constructing the Vertex Loops
	Constructing the Faces

	4.2.3  Joint Construction
	4.2.3.1 The Interim Core Scheme (ICS)
	Preparing the Edge Loops

	4.3.3.2 Convex Hull Construction - Randomized Incremental Algorithm

	4.2.4 Mesh Data Structure
	4.2.5  Wavefront .OBJ model format

	4.3 Parameterization
	4.3.1 Introduction
	4.3.2 Parameterization of the branch segments
	4.3.3  Parameterization of the Joint Sections through Interpolation
	4.3.4 Collapsing edges
	4.3.5 Limitations

	4.4 Subdivision Surfaces
	4.4.1 Introduction
	4.4.2 Loop Subdivision
	4.4.3 Subdividing texture coordinates

	4.5 Discussion

	Chapter 5  Experimentation and Results
	5.1 Initial Evaluation – Expert Users
	5.1.1 Joint Mesh Construction Errors
	5.1.2 Subdivision Surface Smoothness
	5.1.3 Mesh Parameterization

	5.2 Final Evaluation – Participant Study
	5.2.1 Experimental Method
	Testing Interface
	Image Preparation

	Experimental Procedure
	5.2.2 Results
	Accounting for Anomalies
	Analysis of Results
	Qualitative Analysis


	5.3 Performance Evaluation
	5.4 System Limitations
	5.4.1 Parameterization
	5.4.2 Subdivision of Texture Coordinates
	5.4.3 Graph Simplification
	5.4.4 Bezier Curves

	5.5 Example Models and Degenerate Cases

	Chapter 6  Conclusion
	6.1 Future Work
	6.1.1 Avoiding simplification
	6.1.2 Displacement maps
	6.1.3 Bezier Curves


	References
	Appendix
	A An overview of the TreeDraw system
	Sketch Interface and Gesture Recognition
	2D to 3D converter
	L-System Generator and Compiler
	Tree Model Generator

	B Edge collapse algorithm
	C Ethical Clearance
	D Experiment Data
	E Test Image Examples


